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Weakest preconditions

e A modal alternative to Hoare logic that makes Hoare triples
“first class” (cf. dynamic logic).
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Substructural weakest preconditions

¢ Modern wps are defined in separation logic, to support
reasoning about resources (e.qg., Iris).

e Defining these substructural wps is the primary challenge
of building new program logics.
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Lilac (probabilistic separation logic)
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Borrowing
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The dream

e wps for free: reliable methods for going from a description
of a computational effect to a good substructural wp for it.

e Reuse: constructions for getting fancier wps from simpler
ones (e.qg., relational from unary, step-indexed from non).



The reality

e Good wps are found through trial and error.

e Expected properties are (re)checked by hand each time
(e.g., the frame rule, the “bind lemma”, desired proof rules).

e No agreed-upon definition for “"good substructural wp”.



Towards a categorical definition of substructural wp



Substructural weakest preconditions in fibrations

Weakest preconditions in fibrations
e Our substructural take on

Alejandro Aguirre’, Shin-ya Katsumata®>*‘" and Satoshi Kura’

e We define “good substructural wp” to mean a strong lifting
of a computational monad along a bunched fibration.

e Through this, we hope to make general facts about monad
and liftings useful to the design of good substructural wps.
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e Such a functor pl Is called a fibration with total category E.

Set
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Weakest preconditions in fibrations

Background:

Alejandro Aguirre', Shin-ya Katsumata®>*" and Satoshi Kura’

e Agquirre et. al’s insight: a “good wp” is a /ifting of a
computational monad T along the fibration p.
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Set ;) (Tn,u)

e Liftings give wps with the usual proof rules for ret, >>=.



Generalizing to substructural wp



What to do about the frame rule?
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What to do about the frame rule?

e Observation: the frame rule is equivalent to

Fxwp(e, x. ) Fwp(e, x. Fx Q)

e This has the form of a monad strength:

XQ I(Y) - T(XQ Y)



The role of strength
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The role of strength

F——£—>T(A) A®A—"—» T(B)

AQT T(B)

A@fl Tg’r

A ® T(B) ——— T(A ® B)



Substructural wp as a strong monad lifting
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Substructural wp as a strong monad lifting

=) (I'n'uo") strong w.rt. (E,®,)

lp
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c



Putting it all together

e A bunched monad lifting consists of:
o A strong monad (7,n,u4,0) On a category B with X1

o A strong monad (7T",n"u'.c") on a SMC (E,®,]) with x,1

E
o A monoidal fibration lp that sends (7",n"u',c") to (I,n,u,0)

B



Proposition

e Every bunched monad lifting 7" of T models

o conjunctive predicate B, plus
o a wp modality with the usual rules for ret, >>=, frame,

and wp commutes with subst. if 7" is a fibered functor.



Example: vanilla separation logic

e LetT:Set— Setbe the state monad 7(X) = Heap = X x Heap.

e Let E be the category of separation logic predicates:
o QObjects are pairs (X,P) where P : X — Heap — Prop
o Morphisms (X,P) — (Y,Q) are functions f: X — Y such that

P(x) € O(f(x))

e Letp:E — Setbe the fibration p(X,P) = X.



Example: vanilla separation logic

e¢ The monad T lifts along p to the monad

T":E—E
r'Xx.p) = (IX),0)

where O(c) = { h |V f. fw hdefined =
dh'. c(fwh)=(fw h' x) and
P(x)(h) §



A general construction
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Future and ongoing work

Algebraic presentations of wp

Monad transformers for bunched liftings
Relationship to existing categorical models of Bl
Adequacy via gluing



