Substructural Weakest Preconditions in Fibrations

John Li, Ryan Doenges, Pedro Azevedo de Amorim

Weakest preconditions

• A modal alternative to Hoare logic that makes Hoare triples "first class" (cf. dynamic logic).

 $\{P\}e\{x.Q\}$

 $P \subseteq \text{wp}(e, x. Q)$

$$P \subseteq wp(e, x. Q)$$

 $wp(e, x. Q) = \{ s \mid e(s) = (s', x) \text{ and } s' \in Q(x) \}$

 $\{P\}e\{x,Q\}$ $\forall x,\{Q\}kx\{y,R\}$

 $\{P\} e >= k \{y, R\}$

 $\operatorname{wp}(e, x. \operatorname{wp}(k x, y. R)) \subseteq \operatorname{wp}(e >>= k, y. R)$

Substructural weakest preconditions

 Modern wps are defined in <u>separation logic</u>, to support reasoning about resources (e.g., Iris).

 Defining these <u>substructural wps</u> is the primary challenge of building new program logics.

Iris

$$\begin{split} \mathsf{wp} \ e \ \{\Phi\} &\triangleq (e \in \mathit{Val} \land \dot{\Longrightarrow} \varPhi(e)) \\ & \lor \left(e \notin \mathit{Val} \land \forall \sigma . \left[\bullet \ \sigma \right]^{\gamma_{\mathsf{HEAP}}} \to * \dot{\Longrightarrow} \left(\mathrm{red}(e, \sigma) \right. \\ & \land \, \lor \forall e_2, \sigma_2, \vec{e}_f . \left((e, \sigma) \to_\mathsf{t} (e_2, \sigma_2, \vec{e}_f) \right) \to * \dot{\Longrightarrow} \\ & \left(\left[\bullet \ \sigma_2 \right]^{\gamma_{\mathsf{HEAP}}} * \mathsf{wp} \ e_2 \ \{\Phi\} * *_{e' \in \vec{e}_f} \mathsf{wp} \ e' \ \{v.\mathsf{True}\} \right) \right) \\ & \ell \mapsto v \triangleq \left[\circ \left[\ell \leftarrow v \right]^{\gamma_{\mathsf{HEAP}}} \end{split}$$

Lilac (probabilistic separation logic)

```
 \gamma, D, \mathcal{P} \models \mathsf{wp}(M, X : A.Q) \quad \text{iff} \quad \text{for all $\mathcal{P}_{\mathrm{frame}}$ and $\mu$ with $\mathcal{P}_{\mathrm{frame}} \bullet \mathcal{P} \sqsubseteq (\Sigma_{\Omega}, \mu)$ and all $D_{\mathrm{ext}} : \mathrm{RV} \llbracket \Delta_{\mathrm{ext}} \rrbracket$ \\ \quad \text{there exists $X : \mathrm{RV} A$ and $\mathcal{P}'$ and $\mu'$ with $\mathcal{P}_{\mathrm{frame}} \bullet \mathcal{P}' \sqsubseteq (\Sigma_{\Omega}, \mu')$ } \\ \quad \text{such that} \begin{pmatrix} \omega \leftarrow \mu; \\ v \leftarrow M(\gamma)(D(\omega)); \\ \mathrm{ret} \ (D_{\mathrm{ext}}(\omega), D(\omega), v) \end{pmatrix} = \begin{pmatrix} \omega \leftarrow \mu'; \\ \mathrm{ret} \ (D_{\mathrm{ext}}(\omega), D(\omega), X(\omega)) \end{pmatrix}  and \gamma, (D, X), \mathcal{P}' \models Q
```

Borrowing

$$\begin{aligned} \operatorname{wp}\left(e\right)\left\{\hat{Q}\right\} &\triangleq & \forall \, \rho_f \, \# \, \rho. \, \, \exists \, \rho' \, \# \, \rho_f, \rho^+ \, \# \, (\rho_f \bullet \rho'), v. \\ & \left(\llbracket \rho_f \bullet \rho \rrbracket, e\right) \to^* \left(\llbracket \rho_f \bullet \rho' \bullet \rho^+ \rrbracket, v\right) \wedge \rho \Leftrightarrow \rho' \bullet \rho^+ \wedge \rho^+|_{\operatorname{own}} = \varnothing \wedge \hat{Q}(v)(\rho') \\ & \rho_1 \Leftrightarrow \rho_2 &\triangleq & \begin{cases} \forall \, \ell, \alpha, \overline{\beta}, v, \rho, \hat{P}. \\ \left(\lVert \rho_1 \rVert(\ell) = \operatorname{mut}(\alpha, \underline{\hspace{0.5cm}}, \underline{\hspace{0.5cm}}, \hat{P}) \Leftrightarrow \lVert \rho_2 \rVert(\ell) = \operatorname{mut}(\alpha, \underline{\hspace{0.5cm}}, \underline{\hspace{0.5cm}}, \hat{P})) \\ & \wedge (\lVert \rho_1 \rVert(\ell) = \operatorname{imm}(\overline{\beta}, v, \rho) \Leftrightarrow \lVert \rho_2 \rVert(\ell) = \operatorname{mut}(\overline{\beta}, v, \rho)), & \checkmark \, \rho_1 \wedge \checkmark \, \rho_2 \end{aligned}$$

Borrowing

$$\begin{aligned} \operatorname{wp}\left(e\right)\left\{\hat{Q}\right\} &\triangleq & \forall \, \rho_f \, \# \, \rho. \, \, \exists \, \rho' \, \# \, \rho_f, \rho^+ \, \# \, (\rho_f \bullet \rho'), v. \\ & \left(\llbracket \rho_f \bullet \rho \rrbracket, e\right) \to^* \left(\llbracket \rho_f \bullet \rho' \bullet \rho^+ \rrbracket, v\right) \wedge \rho \Leftrightarrow \rho' \bullet \rho^+ \wedge \rho^+|_{\operatorname{own}} = \varnothing \wedge \hat{Q}(v)(\rho') \\ & \rho_1 \Leftrightarrow \rho_2 &\triangleq & \begin{cases} \forall \, \ell, \alpha, \overline{\beta}, v, \rho, \hat{P}. \\ \left(\lVert \rho_1 \rVert(\ell) = \operatorname{mut}(\alpha, \underline{}, \underline{}, \hat{P}) \Leftrightarrow \lVert \rho_2 \rVert(\ell) = \operatorname{mut}(\alpha, \underline{}, \underline{}, \hat{P})) \\ \wedge \left(\lVert \rho_1 \rVert(\ell) = \operatorname{imm}(\overline{\beta}, v, \rho) \Leftrightarrow \lVert \rho_2 \rVert(\ell) = \operatorname{mut}(\overline{\beta}, v, \rho)), & \checkmark \, \rho_1 \wedge \checkmark \, \rho_2 \end{cases} \end{aligned}$$

To learn more about this one, stick around for:

Sat 18 Oct

Talk

16:45 15m 🕸 From Linearity to Borrowing

Andrew Wagner Northeastern University, Olek Gierczak Northeastern University, Brianna Marshall Northeastern University, John Li Northeastern University, Amal Ahmed Northeastern University, USA

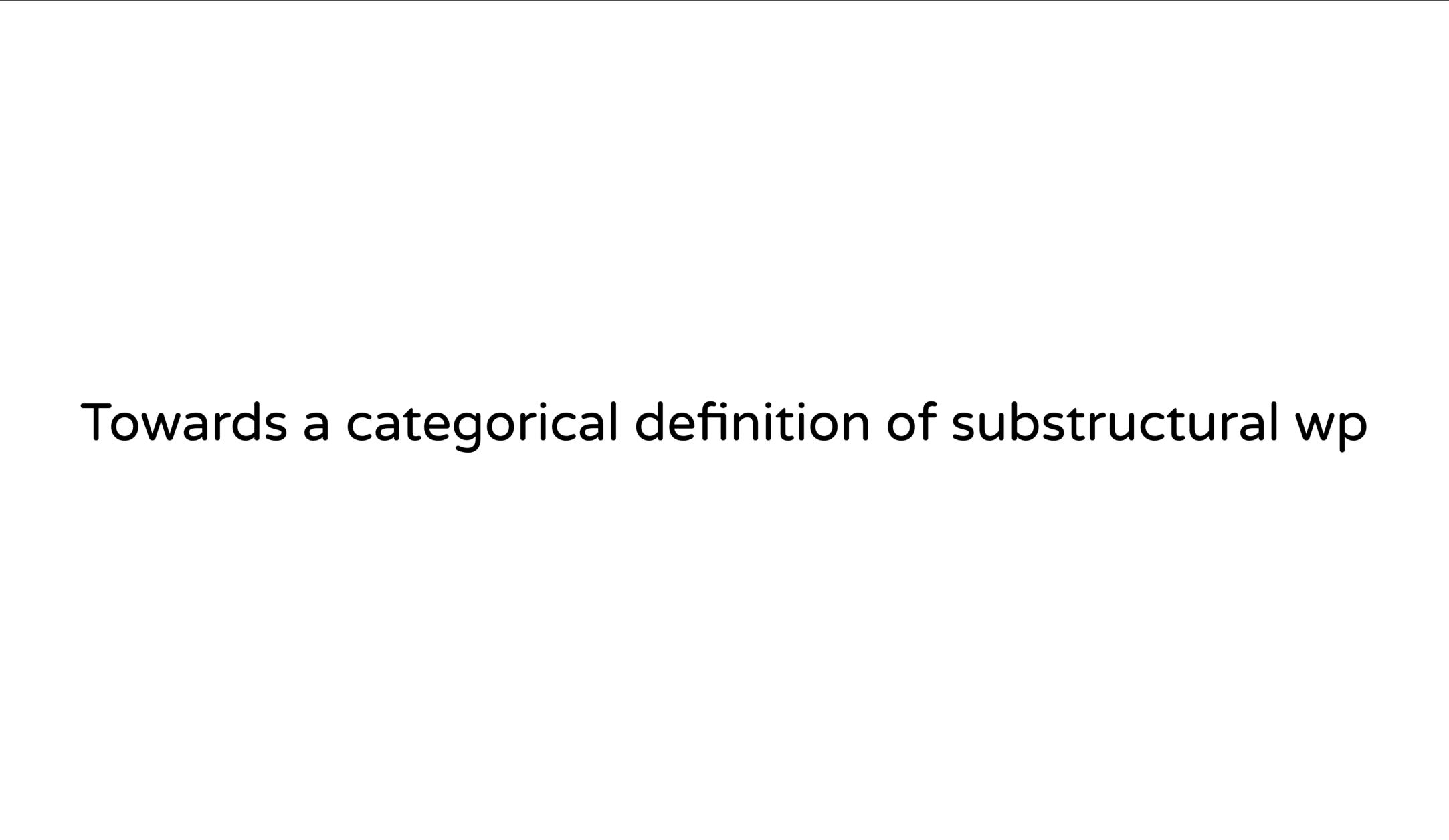
The dream

 wps for free: reliable methods for going from a description of a computational effect to a good substructural wp for it.

 Reuse: constructions for getting fancier wps from simpler ones (e.g., relational from unary, step-indexed from non).

The reality

- Good wps are found through trial and error.
- Expected properties are (re)checked by hand each time (e.g., the frame rule, the "bind lemma", desired proof rules).
- No agreed-upon definition for "good substructural wp".



Substructural weakest preconditions in fibrations

Our substructural take on

Weakest preconditions in fibrations

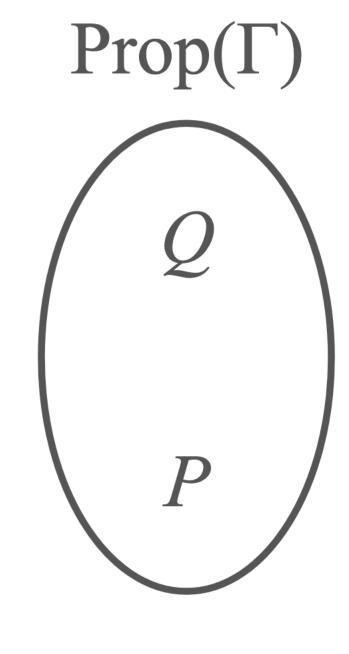
- We define "good substructural wp" to mean a *strong lifting* of a computational monad along a *bunched fibration*.
- Through this, we hope to make general facts about monad and liftings useful to the design of good substructural wps.

Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³

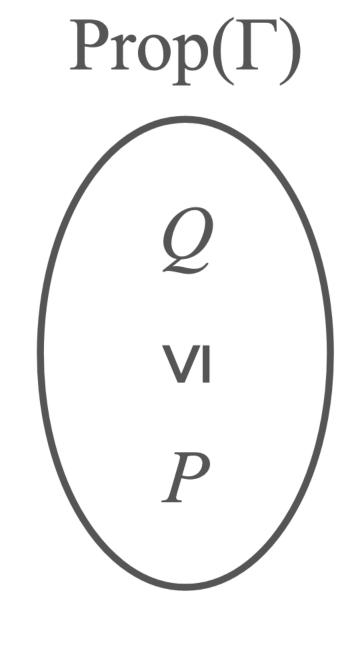
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



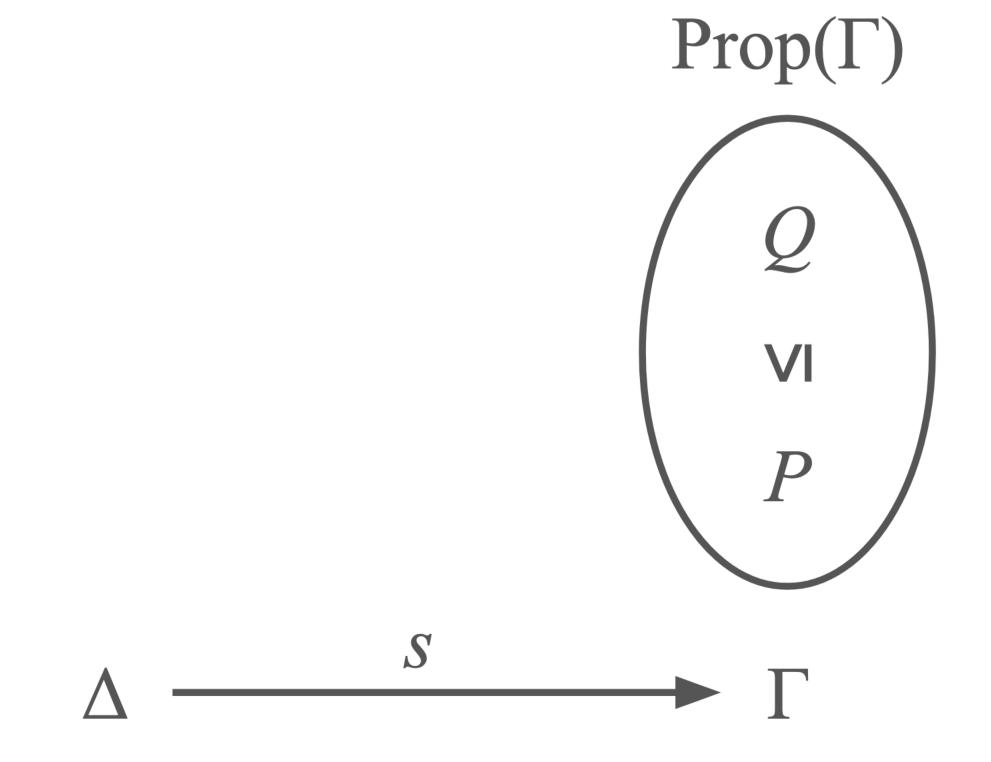
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



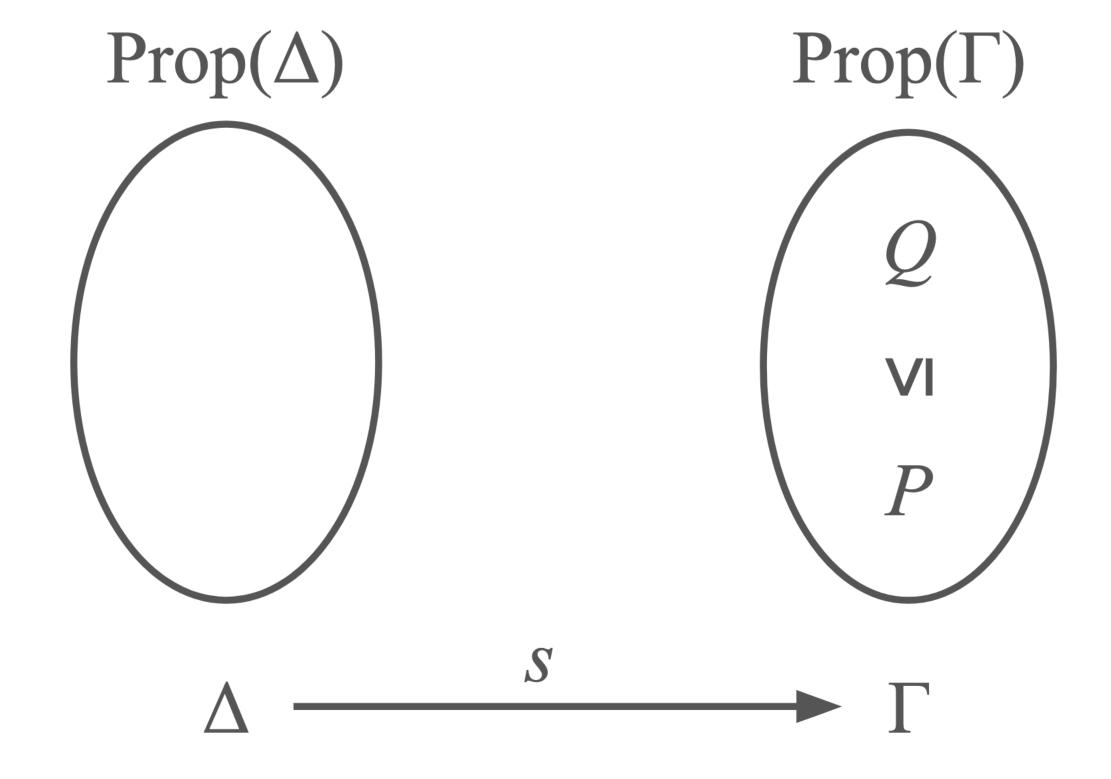
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



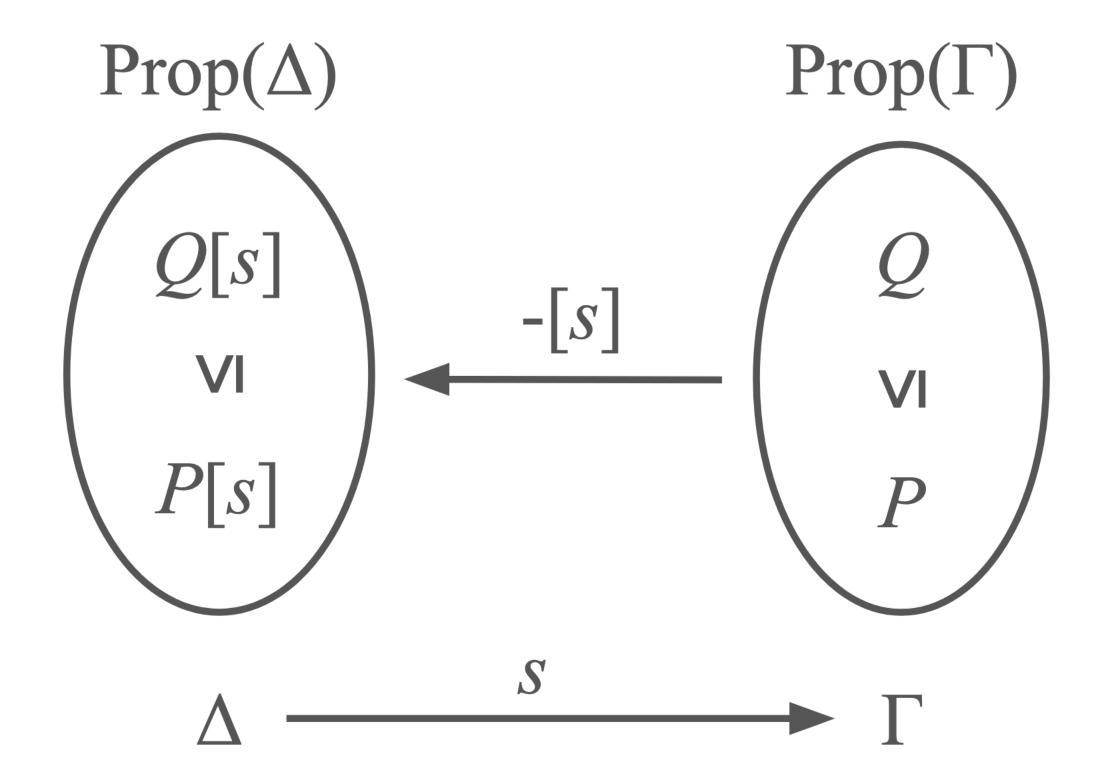
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³

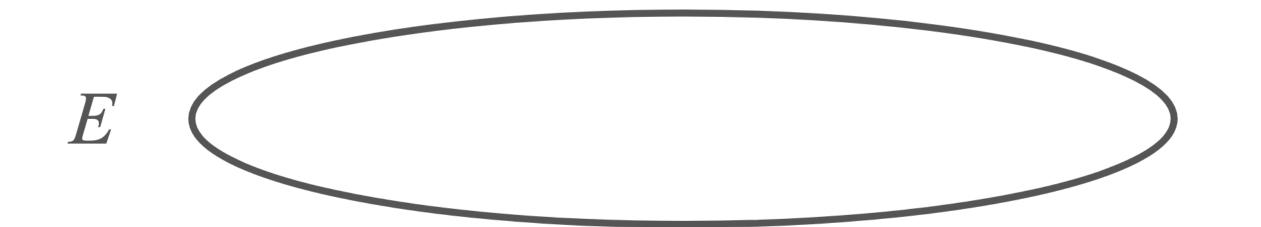


Weakest preconditions in fibrations

- A model of predicate logic forms a functor Prop : Set \rightarrow HA.
- Fibered alternative: find a category E and functor $p: E \to \operatorname{Set}$ whose fibers are Prop (i.e., $p^{-1}(\Gamma) = \operatorname{Prop}(\Gamma)$ for all Γ).

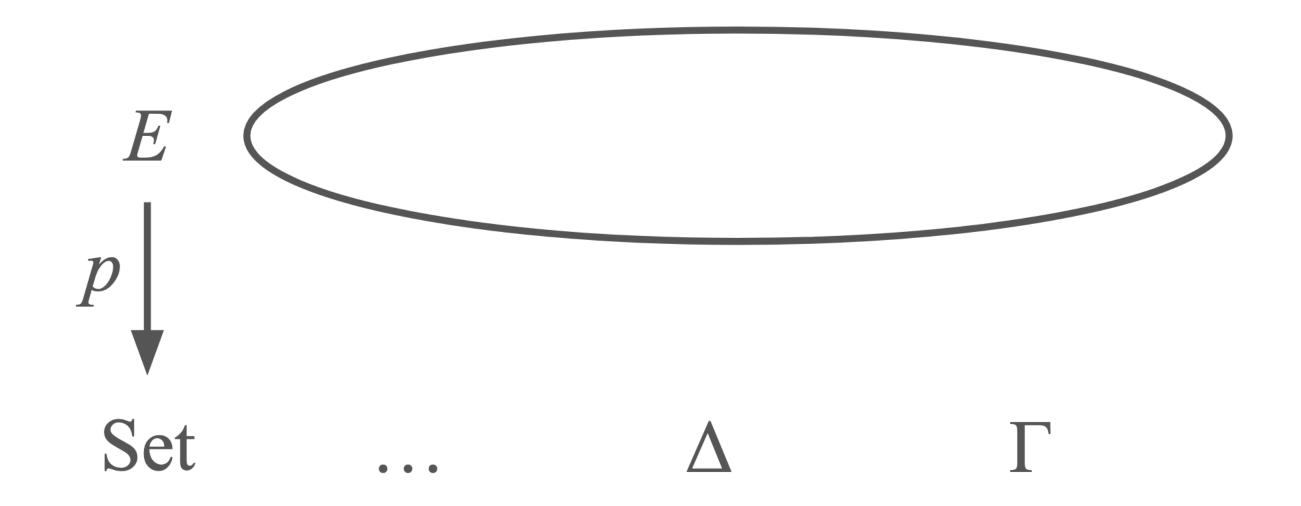
Weakest preconditions in fibrations

- A model of predicate logic forms a functor Prop : Set \rightarrow HA.
- Fibered alternative: find a category E and functor $p: E \to \operatorname{Set}$ whose fibers are Prop (i.e., $p^{-1}(\Gamma) = \operatorname{Prop}(\Gamma)$ for all Γ).



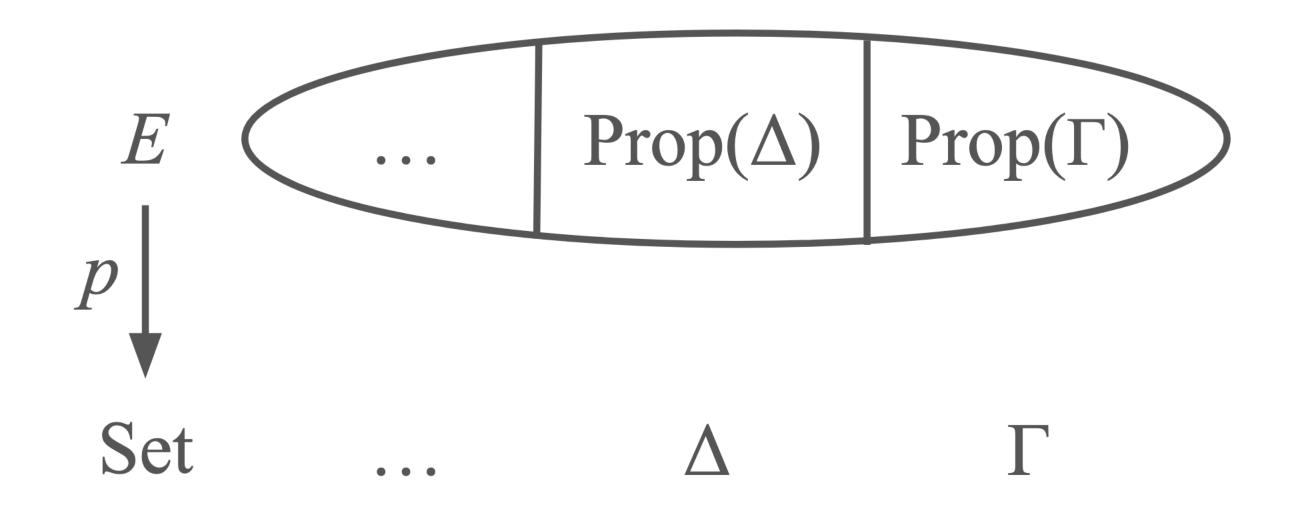
Weakest preconditions in fibrations

- A model of predicate logic forms a functor Prop : Set \rightarrow HA.
- Fibered alternative: find a category E and functor $p: E \to \operatorname{Set}$ whose fibers are Prop (i.e., $p^{-1}(\Gamma) = \operatorname{Prop}(\Gamma)$ for all Γ).



Weakest preconditions in fibrations

- A model of predicate logic forms a functor Prop : Set \rightarrow HA.
- Fibered alternative: find a category E and functor $p: E \to \operatorname{Set}$ whose fibers are Prop (i.e., $p^{-1}(\Gamma) = \operatorname{Prop}(\Gamma)$ for all Γ).



Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³

- A model of predicate logic forms a functor Prop : Set \rightarrow HA.
- Fibered alternative: find a category E and functor $p: E \to \operatorname{Set}$ whose fibers are Prop (i.e., $p^{-1}(\Gamma) = \operatorname{Prop}(\Gamma)$ for all Γ).

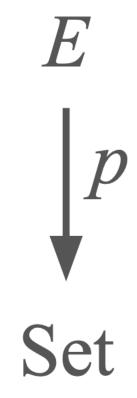
• Such a functor p is called a *fibration* with *total category E*. Set

Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³

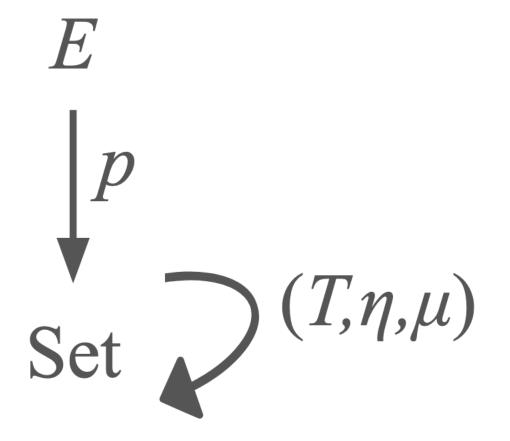
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



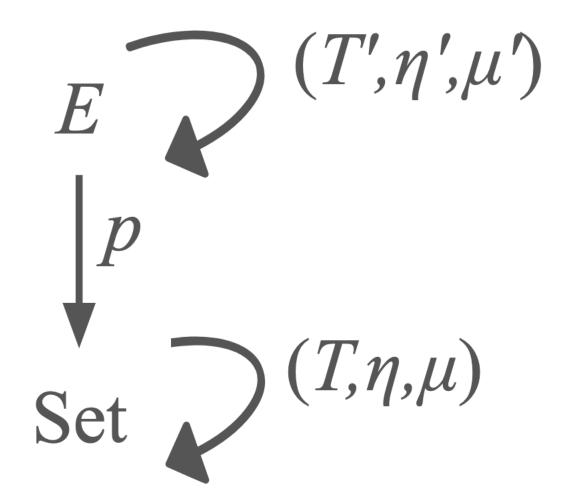
Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



Weakest preconditions in fibrations

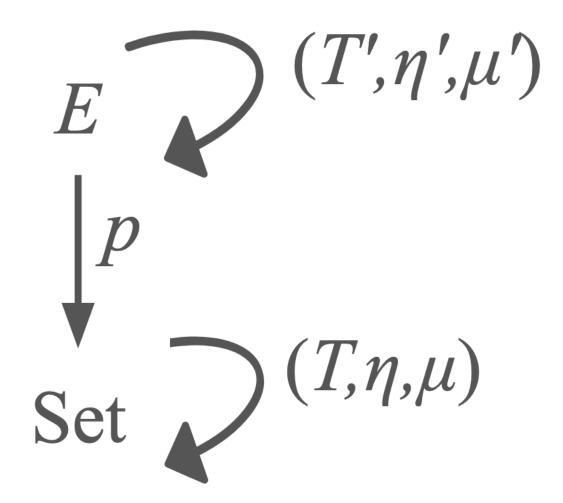
Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³



Weakest preconditions in fibrations

Alejandro Aguirre¹, Shin-ya Katsumata^{2,*} and Satoshi Kura³

• Aguirre et. al.'s insight: a "good wp" is a *lifting* of a computational monad T along the fibration p.



Liftings give wps with the usual proof rules for ret, >>=.

Generalizing to substructural wp

What to do about the frame rule?

$$\{P\} e \{x. Q\}$$

$$\{P \star F\} e \{x. Q \star F\}$$

What to do about the frame rule?

Observation: the frame rule is equivalent to

$$F \star \text{wp}(e, x. Q) \vdash \text{wp}(e, x. F \star Q)$$

What to do about the frame rule?

• Observation: the frame rule is equivalent to

$$F \star \text{wp}(e, x. Q) \vdash \text{wp}(e, x. F \star Q)$$

This has the form of a monad strength:

$$X \otimes T(Y) \longrightarrow T(X \otimes Y)$$

$$\Gamma \vdash M : A$$
 $\Delta, x : A \vdash N : B$ $\Delta, \Gamma \vdash (\text{let } x = M \text{ in } N) : B$

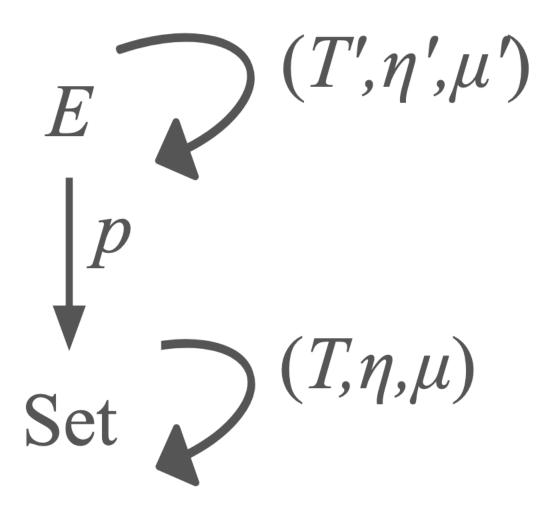
$$\Gamma \xrightarrow{f} T(A) \qquad \Delta, \ x : A \vdash N : B$$

$$\Delta, \ \Gamma \vdash (\text{let } \mathbf{x} = M \text{ in } N) : B$$

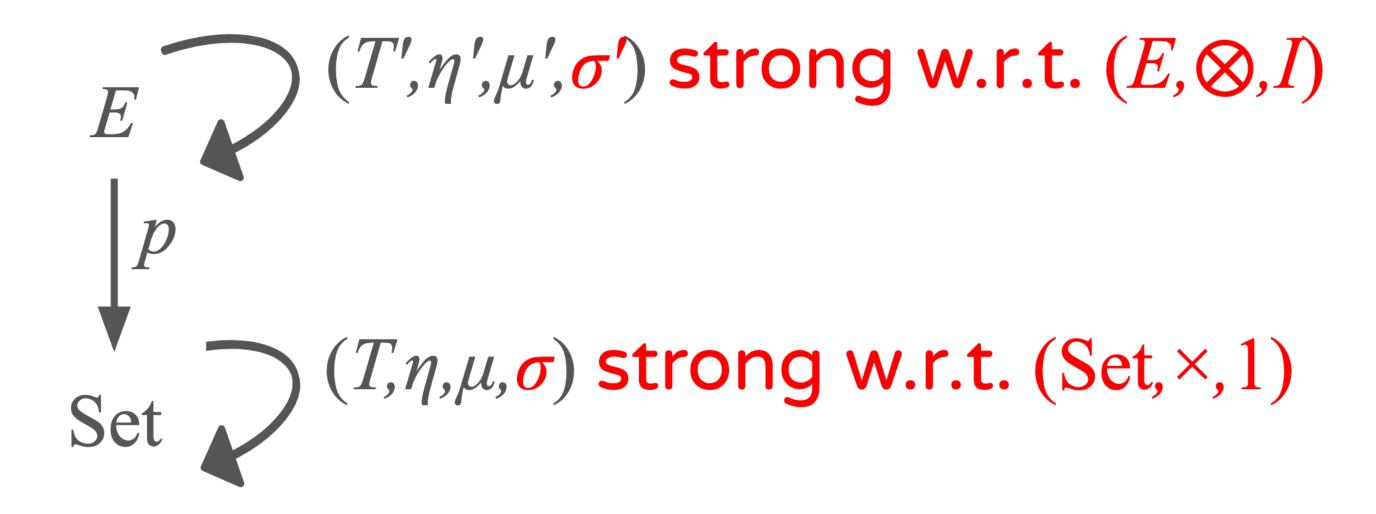
$$\frac{f}{\Gamma \longrightarrow T(A)} \quad \Delta \otimes A \xrightarrow{g} T(B)$$

$$\Delta, \ \Gamma \vdash (\text{let } \mathbf{x} = M \text{ in } N) : B$$

Substructural wp as a strong monad lifting



Substructural wp as a strong monad lifting



Putting it all together

- A <u>bunched monad lifting</u> consists of:
 - A strong monad (T, η, μ, σ) on a category B with \times , 1
 - A strong monad $(T', \eta', \mu', \sigma')$ on a SMC (E, \otimes, I) with \times , 1

Proposition

- ullet Every bunched monad lifting T' of T models
 - conjunctive predicate BI, plus
 - o a wp modality with the usual rules for ret, >>=, frame, and wp commutes with subst. if T' is a fibered functor.

Example: vanilla separation logic

• Let $T: Set \rightarrow Set$ be the state monad $T(X) = Heap \Rightarrow X \times Heap$.

- Let *E* be the category of separation logic predicates:
 - Objects are pairs (X,P) where $P:X \to \text{Heap} \to \text{Prop}$
 - Morphisms $(X,P) \rightarrow (Y,Q)$ are functions $f: X \rightarrow Y$ such that $P(x) \subseteq Q(f(x))$
- Let $p: E \to Set$ be the fibration p(X,P) = X.

Example: vanilla separation logic

• The monad T lifts along p to the monad

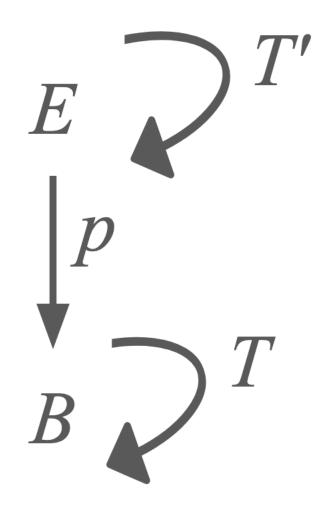
$$T': E \rightarrow E$$

$$T'(X,P) = (T(X),Q)$$

where
$$Q(c) = \{ h \mid \forall f. \ f \uplus h \ \text{defined} \Longrightarrow \exists h'. \ c(f \uplus h) = (f \uplus h', x) \ \text{and} P(x)(h') \}$$

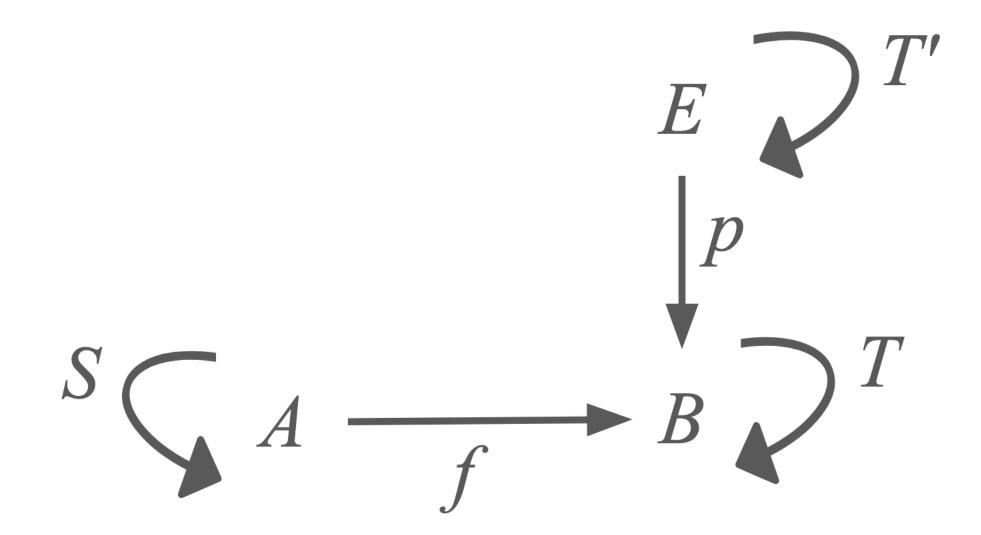
A general construction

Bunched monad liftings are stable under pullback:



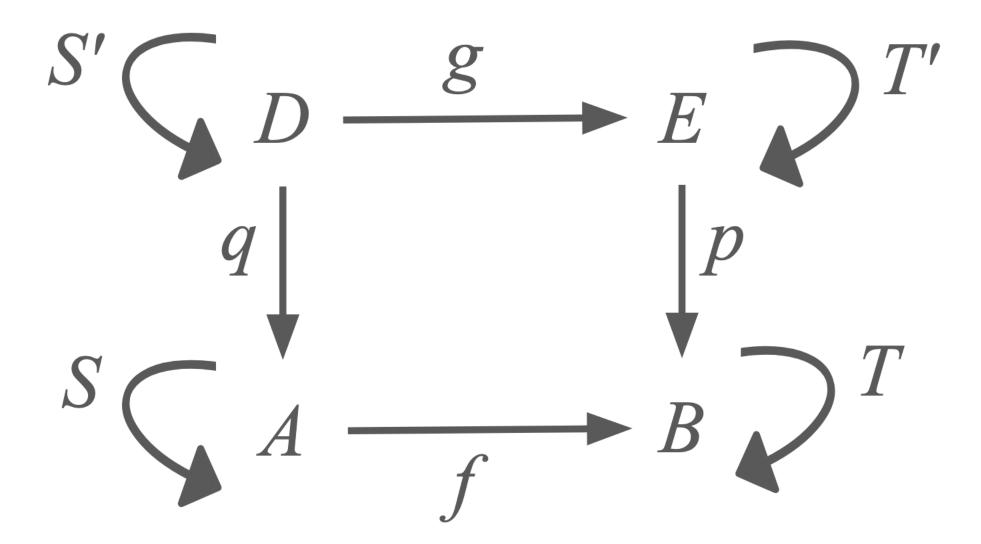
A general construction

Bunched monad liftings are stable under pullback:



A general construction

Bunched monad liftings are stable under pullback:



$$(\ell \mapsto -) \star (\forall v. (\ell \mapsto v) - \star wp(k(v), x. Q)) \vdash wp(get(\ell) >>= k, x. Q)$$

$$(\ell \mapsto -) \star (\forall v. (\ell \mapsto v) - \star \operatorname{wp}(k(v), x. Q)) \vdash \operatorname{wp}(\operatorname{get}(\ell) >>= k, x. Q)$$

$$L \otimes (V \multimap T(X)) \longrightarrow T(X)$$

$$(\ell \mapsto -) \star (\forall v. (\ell \mapsto v) - \star \operatorname{wp}(k(v), x. Q)) \vdash \operatorname{wp}(\operatorname{get}(\ell) >>= k, x. Q)$$

$$L \otimes (V \multimap T(X)) \longrightarrow T(X)$$

$$(\ell \mapsto -) \star ((\ell \mapsto \nu) - \star \operatorname{wp}(k(\nu), x. Q)) \vdash \operatorname{wp}(\operatorname{set}(\ell, \nu) >>= k, x. Q)$$

$$(\ell \mapsto -) \star (\forall v. (\ell \mapsto v) - \star \operatorname{wp}(k(v), x. Q)) \vdash \operatorname{wp}(\operatorname{get}(\ell) >>= k, x. Q)$$

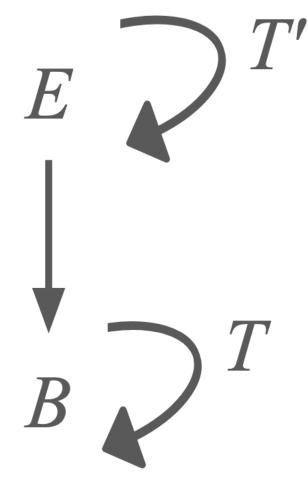
$$L \otimes (V \multimap T(X)) \longrightarrow T(X)$$

$$(\ell \mapsto -) \star ((\ell \mapsto v) - \star \operatorname{wp}(k(v), x. Q)) \vdash \operatorname{wp}(\operatorname{set}(\ell, v) >>= k, x. Q)$$

$$(L \otimes V) \otimes (I \multimap T(X)) \longrightarrow T(X)$$

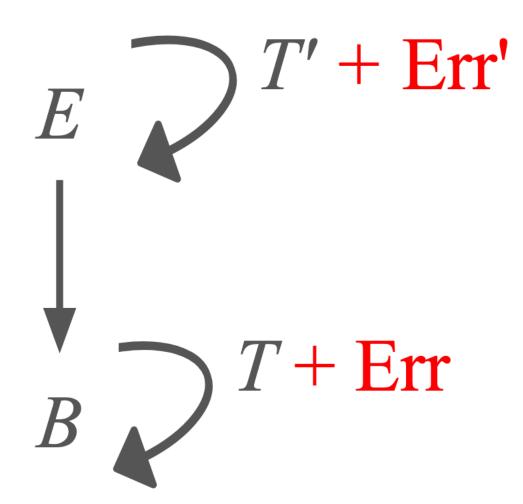
- Algebraic presentations of wp
- Monad transformers for bunched liftings

wp for T



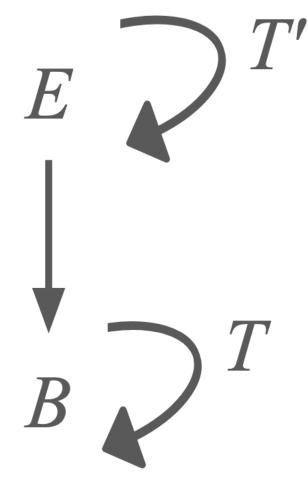
- Algebraic presentations of wp
- Monad transformers for bunched liftings

wp for
$$T + Err$$



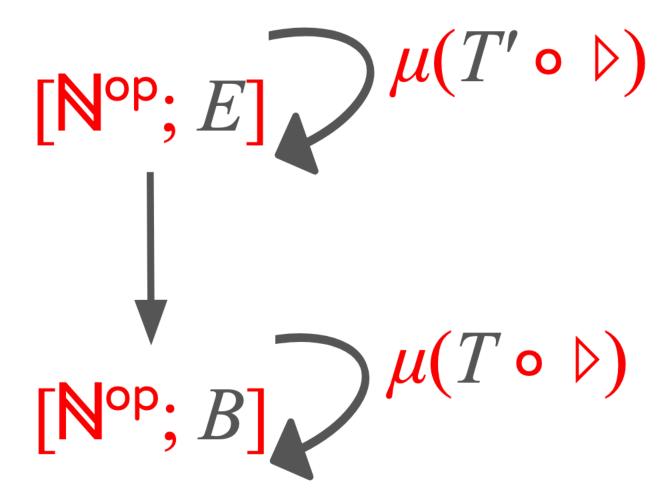
- Algebraic presentations of wp
- Monad transformers for bunched liftings

wp for T



- Algebraic presentations of wp
- Monad transformers for bunched liftings

Step-indexed wp for $\mu(T \circ \triangleright)$



- Algebraic presentations of wp
- Monad transformers for bunched liftings
- Relationship to existing categorical models of BI

- Algebraic presentations of wp
- Monad transformers for bunched liftings
- Relationship to existing categorical models of BI

BI-Hyperdoctrines, Higher-Order Separation Logic, and Abstraction

BODIL BIERING, LARS BIRKEDAL, and NOAH TORP-SMITH IT University of Copenhagen

- Algebraic presentations of wp
- Monad transformers for bunched liftings
- Relationship to existing categorical models of BI
- Adequacy via gluing