
New foundations for probabilistic separation logic
John Li (li.john@northeastern.edu), Amal Ahmed (amal@ccs.neu.edu), Steven Holtzen (s.holtzen@northeastern.edu)

Statistical independence is a fundamental modularity 
principle: probabilistic reasoning frequently proceeds 
by decomposition into independent pieces. 

Both sampling and allocation are generative: sampling 
yields a random variable independent of previous ones, 
just as allocation yields a fresh chunk of memory.

In these logics, propositions are sets of distributions 
on stores, and  if  factors into independent 

distributions  and  on stores with disjoint domain.

μ ⊨ P * Q μ
μ1 μ2



 

X = 𝚏𝚕𝚒𝚙 1/2; Y = 𝚏𝚕𝚒𝚙 1/2; Z = X + Y
{(Z − X) * (Z − Y)}

This postcondition is unprovable because  appears twice.Z

Probabilistic programs are getting big, and their verification at scale requires modularity      .

Parallels between probability and mutable state suggest the use of separation logic      .


Some common independences are not expressible:

Some separation logics support independence substructurally      , but they overapproximate      .

Fix a sample space . The independent combination of 

two probability spaces  and  is


    


where  for all , .

Ω
(ℱ, μ) (𝒢, ν)

(ℱ, μ) ⋅ (𝒢, ν) = (σ(ℱ, 𝒢), ρ)
ρ(F ∩ G) = μ(F)ν(G) F ∈ ℱ G ∈ 𝒢

Independent combination forms a Kripke resource monoid, 
giving the expected interpretation of separating conjunction:


We present a new model of separation logic where separating conjunction is interpreted by the 
independent combination of probability spaces      . This novel combining operation is the probabilistic 
analogue of disjoint union of heaps      .

 iff  mutually independent. 
(ℱ, μ) ⊨ X1 * … * Xn X1, …, Xn

This new separation logic precisely captures independence      , enjoys a completely standard frame rule, 
and easily supports continuous random variables. Using disintegration theory, we extend the base logic 
with a conditioning modality      , and use this modal logic to verify a challenging randomized algorithm      .

 says  holds conditional on  for all . 
Propositions have intuitive "conditional" readings 
under . For example,  expresses 

conditional independence of  and  given .

𝖣x←XP P X = x x

𝖣 𝖣x←X (Y * Z)
Y Z X

Sampling from a finite distribution can be done in constant 
space given access to continuous variables. The correctness 
proof uses  to condition on a continuous variable and a 
derived rule expressing the law of total expectation. A crucial 
step exploits independences automatically preserved 
through each loop iteration by the frame rule.

𝖣

1

2

1 2

3 4

3 4

5
6

7

5 6

7

8 9

8
9

Using independent combination, one can read probabilistic programs operationally: sampling literally 
allocates probability spaces, and conditioning performs destructive update      .8


Y = 𝚏𝚕𝚒𝚙 1/2;


𝚘𝚋𝚜𝚎𝚛𝚟𝚎 X = 𝚃;

(ℰ, ρ) ⊨ P * Q ⟺
there exists  and  

with  and  

and .


(ℱ, μ) (𝒢, ν)
(ℱ, μ) ⊨ P (𝒢, ν) ⊨ Q
(ℰ, ρ) = (ℱ, μ) ⋅ (𝒢, ν)

8

The 1st  allocates a probability space  with 

blue-orange -algebra and a -measurable 

random variable  with distribution .

𝚏𝚕𝚒𝚙 𝒫X

σ 𝒫X

X Ber 1/2

X = 𝚏𝚕𝚒𝚙 1/2;

The 2nd  allocates  with the dotted-dashed 

-algebra and a -measurable variable , 

producing the independent combination .

𝚏𝚕𝚒𝚙 𝒫Y

σ 𝒫Y Y
𝒫X ⋅ 𝒫Y

Finally,  destructively updates the measure 

stored in  so that .

𝚘𝚋𝚜𝚎𝚛𝚟𝚎
𝒫X P(X = 𝚃) = 1

Shaded regions denote 
events, and their areas 
denote probabilities.

https://john-ml.github.io/lilac.pdf


https://john-ml.github.io/lilac.pdf
mailto:li.john@northeastern.edu
mailto:amal@ccs.neu.edu
mailto:s.holtzen@northeastern.edu

