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There are many different probabilistic programming languages that are specialized to specific kinds of
probabilistic programs. From a usability and scalability perspective, this is undesirable: today, probabilistic
programmers are forced up-front to decide which language they want to use and cannot mix-and-match
different languages for handling heterogeneous programs. To rectify this, we seek a foundation for sound
interoperability for probabilistic programming languages: just as today’s Python programmers can resort
to low-level C programming for performance, we argue that probabilistic programmers should be able
to freely mix different languages for meeting the demands of heterogeneous probabilistic programming
environments. As a first step towards this goal, we introduceMultiPPL, a probabilistic multi-language that
enables programmers to interoperate between two different probabilistic programming languages: one that
leverages a high-performance exact discrete inference strategy, and one that uses approximate importance
sampling. We give a syntax and semantics for MultiPPL, prove soundness of its inference algorithm, and
provide empirical evidence that it enables programmers to perform inference on complex heterogeneous
probabilistic programs and flexibly exploits the strengths and weaknesses of two languages simultaneously.

CCS Concepts: •Mathematics of computing→ Bayesian computation; • Theory of computation→
Denotational semantics.
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1 INTRODUCTION

Scalable and reliable probabilistic inference remains a significant barrier for applying and using
probabilistic programming languages (PPLs) in practice. The core of the inference challenge is that
there is no universal approach: different kinds of inference strategies are specialized for different
kinds of probabilistic programs. For example, Stan’s inference strategy is highly effective on
continuous and differentiable programs such as hierarchical Bayesian models, but struggles on
programs with high-dimensional discrete structure such as graph and network reachability [9].
On the other extreme, languages like Dice and ProbLog scale well on purely-discrete problems,
but the price for this scalability is that they must forego any support whatsoever of continuous
probability distributions [16, 23]. In an ideal world, a probabilistic programmer would not have to
commit to one language or the other: they could use a Dice-like language for high-performance
scalable inference on the discrete portion of the program, a Stan-like language for the portion to
which it is well-suited, and be able to transfer data and control-flow between these two languages
for heterogeneous programs.
This raises a key question: how should we orchestrate the handoff between two probabilistic

programming languages whose underlying semantics may be radically different and seemingly
incompatible? This question of sound language interoperability has been extensively explored in
the context of non-probabilistic languages [13, 31, 36, 39, 47, 60, 61], where the goal is to prove
properties such as type-soundness and termination in a multi-language setting. As a starting point,
Matthews and Findler [31] introduced an effective model for capturing the interaction between two
languages by language embedding: the syntax and operational semantics of a Scheme-like language
OOPSLA ’25, October 12–18, 2025, Singapore
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and an ML-like language are unified into a multi-language and syntactic boundary terms are added
to mediate transfer of control and data between the two languages. Using this embedding approach,
they were able to establish the type-soundness of the multi-language. Their approach relied on a
careful enforcement of soundness properties on the boundaries, for instance inserting dynamic
guards or contracts to ensure soundness when typed ML values are transferred to untyped Scheme.
We introduce the notion of sound inference interoperability: whereas sound interoperability

of traditional languages ensures that multi-language programs are type-sound, sound inference

interoperability ensures that probabilistic multi-language programs correctly represent the intended
probability distribution. Our main goal will be to establish sound inference interoperability of two
PPLs: the first is called Disc and is similar to Dice, and the second is called Cont and it makes use
of importance-sampling-based inference. These two languages are a nice pairing: Disc provides
scalable exact discrete inference at the expense of expressivity, as it does not support continuous
random variables and unbounded loops. On the other hand, Cont provides significant expressivity
(it supports continuous random variables) at the cost of relying on importance-sampling-based
approximate inference. Following Matthews and Findler [31], we embed both Disc and Cont into
a multi-language we call MultiPPL. Together, these two languages cover a broad spectrum of
interesting probabilistic programs that are difficult to handle today. We will show in Section 2
and Section 4 that examples from networking and probabilistic graphical models benefit from the
ability to flexibly use different languages and inference algorithms within a unified multi-language.
Traditional multi-language semantics establishes sound interoperability by proving type-soundness
of the combined multi-language [31]. Analogously, we establish sound inference interoperability
between Disc and Cont, guaranteeing that well-typedMultiPPL programs correctly represent
the intended probability distribution. Our contributions are as follows:
• We introduce MultiPPL, a multi-language in the style of Matthews and Findler [31] that en-
ables interoperation between a discrete exact probabilistic programming language Disc and a
continuous approximate probabilistic programming language Cont.
• In Section 3 we construct two models of MultiPPL by combining appropriate semantic domains
for Disc and Cont programs: a high-level model capturing the probability distribution intended
by a given MultiPPL program, and a low-level model capturing the details of our particular
implementation strategy. We then prove that these two semantics agree, establishing correctness
of the implementation (Theorem 3.6). We identify two key requirements for ensuring sound infer-
ence interoperability between exact and approximate programs: Disc programs must additionally
enforce sample consistency for ensuring Disc values pass safely into Cont, and Cont programs
must additionally perform importance weighting for ensuring the safety of Disc conditioning.
• In Section 4 we validate the practical effectiveness of MultiPPL through our provided imple-
mentation. We evaluate the efficacy of MultiPPL by modeling complex independence structures
through real-world problems in the domain of networking and probabilistic graphical models.
We provide insights intoMultiPPL’s approach to probabilistic inference and characterize the
nuanced landscape that interoperation produces.

2 OVERVIEW

We argue that it is often the case that realistic probabilistic programs consist of sub-programs
that are best handled by different probabilistic programming languages. Consider for example the
packet arrival situation visualized in Fig. 1. In this example, at each time step, network packets
are arriving according to a Poisson distribution, a fairly standard setup in discrete-time queueing
theory [32]. Then, each packet is forwarded through the network, whose topology is visualized
as a directed graph. The goal is to query for various properties about the network’s behavior:

2



Multi-Language Probabilistic Programming OOPSLA ’25, October 12–18, 2025, Singapore

R1

R2

R3

R4

1 function step() {
2 let lambda = uniform(0, 5) in
3 let numPackets = poisson(lambda) in
4 for i in 0..numPackets {
5 forwardPacket(R1)
6 }
7 }

Fig. 1. A small network and a fragment of a probabilistic program encoding of the packet arrival problem.

Disc Expressions 𝑀, 𝑁 ::= 𝑋 | true | false |𝑀 ∧ 𝑁 | ¬𝑀
| ⟨⟩ | ⟨𝑀, 𝑁 ⟩ | fst𝑀 | snd𝑀

| ret𝑀 | let 𝑋 be𝑀 in 𝑁 | if 𝑒 then𝑀 else 𝑁

| flip 𝑒 | observe𝑀 | L 𝑒 M𝐸
Types 𝐴, 𝐵 ::= unit | bool | 𝐴 × 𝐵
Contexts Δ ::= 𝑋1 : 𝐴1, . . . , 𝑋𝑛 : 𝐴𝑛

Cont Expressions 𝑒 ::= 𝑥 | true | false | 𝑟 | 𝑒1 + 𝑒2 | − 𝑒 | 𝑒1 · 𝑒2 | 𝑒1 ≤ 𝑒2
| () | (𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒
| ret 𝑒 | let 𝑥 be 𝑒1 in 𝑒2 | if 𝑒1 then 𝑒2 else 𝑒3
| 𝑑 | obs(𝑒𝑜 , 𝑑) | L𝑀 M𝑆

Distributions 𝑑 ::= flip 𝑒 | uniform 𝑒1 𝑒2 | poisson 𝑒
Types 𝜎, 𝜏 ::= unit | bool | real | 𝜎 × 𝜏
Contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
Number literals 𝑟 ∈ R

Fig. 2. Syntax of MultiPPL. In Disc, we require 𝑒 ∈ [0, 1] for flip. In Cont, the syntax of distributions 𝑑

denotes probability distributions. In obs these terms condition, otherwise they are immediately sampled.

for instance, the probability of a packet reaching the end of the network, or of a packet queue
overflowing. This example task is inspired by prior work on using probabilistic programming
languages to perform network verification [18, 53].
The situation in Fig. 1 is a small illustrative example of packet arrival, but programs like it are

extremely challenging for today’s PPLs because they mix different kinds of program structure. Lines
2 and 3 manipulate continuous and countably-infinite-domain random variables, which precludes
the use of Dice. However, graph reachability and queue behavior are complex discrete distributions,
which are difficult for Stan due to their inherent non-differentiability and high-dimensional discrete
structure. In order to scale on this example, we would like to be able to use an inference algorithm
like Stan’s for lines 2 and 3, and an inference algorithm like Dice’s for lines 4–6.
Our approach to designing a language capable of handling situations like that described in

Fig. 1 is to enable the programmer to seamlessly transition between programming in two different
PPLs: Cont, an expressive language that supports sampling-based inference and continuous
random variables, and Disc, a restricted discrete-only language that supports scalable exact discrete
inference. Following Matthews and Findler [31], we describe a probabilistic multi-language that
embeds both languages into a single unified syntax: see Fig. 2. In Section 3.1 we discuss the
intricacies of the syntax in Fig. 2 in full detail, including typing judgments found in Fig. 7 and the
appendix; here we briefly note its high-level structure and discuss examples.
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These languages delineate our two syntactic categories:
(1) Disc terms, shown in purple, that support discrete probabilistic operations such as Bernoulli

random variables and Bayesian conditioning. The syntax is standard for an ML-like functional
language with the addition of probabilistic constructs: flip 𝑒 introduces a Bernoulli random
variable that is true with probability 𝑒 ∈ [0, 1] and false otherwise; the construct observe 𝑀
conditions on𝑀 . Notably, Disc lacks introduction forms for continuous random variables or
real numbers and so in order to define the Bernoulli-distributed random variable using flip, we
must rely on interoperation to construct our distribution.

(2) Cont terms, shown in orange, additionally support standard continuous operations and
sampling capabilities from two distributions inexpressible in Disc: a Uniform distribution
uniform 𝑒1 𝑒2 over the interval [𝑒1, 𝑒2], with 𝑒1, 𝑒2 ∈ R, and a Poisson distribution poisson with
rate 𝑒 ∈ R being greater than zero. The syntax obs(𝑒𝑜 , 𝑑)
denotes conditioning on the event that a sample drawn from distribution 𝑑 is equal to 𝑒𝑜 .

Listing 1. TwoCoins

1 let 𝜃 be uniform 0 1 in
2 L let 𝑋 be flip 𝜃 in

3 let 𝑌 be flip 𝜃 in

4 observe 𝑋 ∨ 𝑌 in

5 ret 𝑋 M𝑆

Mediating between the Disc and Cont sublanguages
are the boundaries L 𝑒 M𝐸 and L𝑀 M𝑆 : the boundary L 𝑒 M𝐸
allows passing from Cont to Disc, and the boundary
L𝑀 M𝑆 allows passing from Disc to Cont. This style of
presentation is similar to Patterson [40].
Listing 1 shows an example program in our multi-

language which passes a uniformly-sampled real value 𝜃
from Cont into Disc and uses the resulting value as a prior for sampling two independent Bernoulli
random variables. The outer-most language is Cont. On Line 1, 𝜃 is bound to a sample drawn from
the uniform distribution on the unit interval. Then, on Lines 2–5, we begin evaluation of a Disc
program inside the boundary term L− M𝑆 . We flip two coins 𝑋 and 𝑌 (Lines 2 and 3, respectively)
in the Disc sub-language, whose prior parameters are both 𝜃 . On Line 4, we observe that one of
the two coins was true, taking advantage of syntactic sugar where observe is bound to a discarded
variable name. Line 5 brings us to the final line of our program, where we query for the probability
that 𝑋 is true. The next two sub-sections will explain our approach to bridging the two languages.

2.1 Disc and Cont inference

Before we describe the intricacies of language interoperation, we first provide some high-level
intuition for how we wish to perform inference on Disc and Cont independently. First, we give
a denotational semantics for MultiPPL that we denote J−K which associates each MultiPPL
term with a probability distribution on MultiPPL values (see Section 3 for a formal definition
of these semantics). Here we will briefly illustrate these semantics by example: the semantics
Jflip 𝑝K produces a Bernoulli distribution that is true with probability 𝑝 ∈ [0, 1]; the semantics
Juniform 𝑒1 𝑒2K produces a uniform distribution on the interval [𝑒1, 𝑒2] ∈ R.
The goal of inference is to efficiently evaluate the denotation of a probabilistic program. While

Disc and Cont share a unified denotation, they have very different approaches to inference. The
key advantage of our multi-language approach is that we can specialize the design of Cont andDisc
to take full advantage of structural differences between their underlying inference algorithms: for
Disc we will use an exact inference strategy based on knowledge compilation similar to Dice [23],
and for Cont we will rely on approximate inference via sampling. In the next two subsections we
give a high-level overview of these standard approaches.

2.1.1 Exact inference via knowledge compilation. Here, we illustrate the principles of exact inference
in Disc via example; Section 3 provides a formal treatment of these semantics. In Fig. 3a, we
reproduce the Disc program compiled in Lines 3–5 of Listing 1, but instantiate the priors of 𝑌 and
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1 let 𝑋 be flip 0.4 in

2 let 𝑌 be flip 0.3 in

3 observe 𝑋 ∨ 𝑌 in

4 ret 𝑋

(a) Example Disc program.

𝑓𝑋

T F

0.4 0.6

𝑓𝑋

𝑓𝑌T

T F

0.60.4

0.3 0.7

(b) BDD representations of formulas.

Fig. 3. Motivating example showing the compilation of the Disc program in 3a to BDDs in 3b. On the left of

3b is a BDD representing the distribution formula 𝜑 = 𝑓𝑋 ; on the right is the BDD representing the accepting

formula 𝛼 = 𝑓𝑋 ∨ 𝑓𝑌 . T and F represent true and false values, respectively.

𝑍 with numeric literals 0.4 and 0.3, respectively. Our example in Fig. 3a denotes the probability
distribution of Bernoulli 0.3, given that one of the two weighted coin flips is true; its semantics is
J𝐹𝑖𝑔. 3𝑎K (true) = 0.4

0.58 ≈ 0.689.
The exact inference strategy used by Disc is to perform probabilistic inference via weighted

model counting [10, 14, 46], following Holtzen et al. [23]. The key idea is to interpret the probabilistic
program as a weighted Boolean formula whose models are in one-to-one correspondence with
paths through the program, and where each path is associated with a weight that matches the
probability of that path in the program. Concretely, a weighted Boolean formula is a pair (𝜑,𝑤)
where 𝜑 is a Boolean formula and 𝑤 is a weight function that associates literals (assignments to
variables) in 𝜑 with real-valued weights. Then, the weighted model count of a weighted Boolean
formula is the weighted sum of models:

WMC(𝜑,𝑤) =
∑︁
{𝑚⊨𝜑 }

∏
{ℓ∈𝑚}

𝑤 (ℓ). (1)

To perform Disc inference by reduction to weighted model counting, we associate each Disc
program with a pair of Boolean formulae in a manner similar to Holtzen et al. [23]: (1) an accepting

formula 𝛼 that encodes the paths through the program that does not violate observations; and (2)
a distribution formula 𝜑 such that WMC(𝜑 ∧ 𝛼) is the unnormalized probability of the program
returning true. For instance, we would compile Fig. 3a into accepting formula𝜑 = 𝑓𝑋 and 𝛼 = 𝑓𝑋∨ 𝑓𝑌 ,
where 𝑓𝑋 is a Boolean variable that represents the outcome of flip 0.4 and 𝑓𝑌 represents the outcome
of flip 0.3. Then, the weight function is𝑤 (𝑓𝑋 ) = 0.4,𝑤 (𝑓𝑋 ) = 0.6,𝑤 (𝑓𝑌 ) = 0.4,𝑤 (𝑓𝑌 ) = 0.3,𝑤 (𝑓𝑌 ) =
0.7. Then, we can compute the semantics of Fig. 3a by performing weighted model counting:

J𝐹𝑖𝑔. 3𝑎K (true) = WMC(𝜑 ∧ 𝛼,𝑤)
WMC(𝛼,𝑤) =

WMC(𝑓𝑋 ,𝑤)
WMC(𝑓𝑋 ∨ 𝑓𝑌 ,𝑤)

=
0.4

0.4 + 0.6 · 0.3 =
0.4
0.58
≈ 0.689

The weighted model counting task is well-studied, and there is an array of high-performance
implementations for solving it [10, 23, 46]. One approach that is particularly effective is knowledge
compilation, which compiles the Boolean formula into a representation for which weighted model
counting can be performed efficiently (typically, polynomial-time in the size of the compiled
representation). A common target for this compilation process is binary decision diagrams (BDDs),
shown in Fig. 3b. A BDD is a rooted DAG whose internal nodes are labeled with Boolean variables
and whose leaves are labeled with either true or false values. A BDD is read top-down: solid edges
denote true assignments to variables, and dashed edges denote false assignments. Once a Boolean
formula is compiled to a BDD, inference can be performed in polynomial time (in the size of the
BDD) by performing a bottom-up traversal of the DAG.
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1 let 𝑥 be flip 0.20 in
2 L let 𝑌 be flip 0.25 in

3 observe L𝑥 M𝐸 ∨ 𝑌 in

4 ret 𝑌 M𝑆

(a) Motivating example.

1 L let 𝑌 be flip 0.25 in

2 observe true ∨ 𝑌 in

3 ret 𝑌 M𝑆

(b) Sampled 𝑥 = true.

1 L let 𝑌 be flip 0.25 in

2 observe false ∨ 𝑌 in

3 ret 𝑌 M𝑆

(c) Sampled 𝑥 = false.

Fig. 4. Interpreting Cont values in Disc.

While highly effective for discrete probabilistic inference tasks with finite domains, inference via
knowledge compilation has a critical weakness: it cannot support continuous random variables or
unbounded discrete random variables due to the requirement that each program be associated with
a (finite) Boolean formula. Hence, the design of Disc must be carefully restricted to only permit
programs that can be compiled to Boolean formulae, which is why it does not contain syntactic
support for these features.

2.1.2 Approximate inference via sampling. A powerful alternative to exact inference is approximate
inference via sampling. The engine that drives sampling-based inference is the expectation estimator.
The expectation estimator is widely used as a foundation for approximate inference strategies for
probabilistic programs [9, 11, 29, 33, 43, 55]. We will use it to give an inference algorithm for Cont.
Concretely, suppose we want to use the expectation estimator to approximate the semantics of the
Cont program Jflip 1/4K. To do this, we can draw 𝑁 = 100 samples from the program: in roughly
1/4 of these samples, the program will output true. This approach is known as direct sampling, and
is one way of utilizing the expectation estimator to design approximate inference algorithms.
Formally, let Ω be a sample space, Pr a probability density function, and let 𝑋 : Ω → R be

a real-valued random variable out of the sample space. Then, the expectation of 𝑋 is defined as
EPr [𝑋 ] =

∫
Pr(𝜔)𝑋 (𝜔)𝑑𝜔 . The expectation estimator approximates the expectation of a random

variable 𝑋 by drawing 𝑁 samples from Pr:

EPr [𝑋 ] ≈
1
𝑁

𝑁∑︁
𝑥∼Pr

𝑋 (𝑥). (2)

There are many more advanced approaches to sampling-based inference beyond direct sampling
such as Hamiltonian Monte-Carlo [9, 34]; at their core, all these approximate inference algorithms
follow the same principle of drawing some number of samples from the program and using that to
estimate the semantics.
When compared with the exact inference strategy described in Section 2.1.1, sampling-based

inference has the key advantage that it only requires the ability to sample from the probabilistic
program: each time a random quantity is introduced, it can be dealt with by eagerly sampling. This
makes sampling an ideal inference algorithm for implementing flexible and expressive languages
with many features: unlike Disc, it is straightforward to add interesting features like continuous
random variable and unbounded loops to Cont without wholesale redesigning of its inference
algorithm. This gain in expressivity comes at the cost of precision: unlike Disc, Cont is only able
to provide an approximation to the final expectation.

2.2 Sound interoperation

Now we move on to our main goal, establishing sound interoperation between the underlying
inference strategies of Disc and Cont by identifying two key invariants that must be maintained
when transporting Disc and Cont values across boundaries: importance weighting and sample
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consistency. At first, there appears to be a straightforward way of establishing interoperation
between these two languages: when a Cont value 𝑣𝑠 is interpreted in a Disc context, it is lifted in
a Dirac-delta distribution on 𝑣𝑠 . Figure 4a gives an illustration of this scenario: first, on Line 1 we
sample a value (either true or false) for 𝑥 . Then, on Line 3 we interpret 𝑥 within an exact context.
Figures 4b and 4c show the two possible liftings: the sampled value is given its straightforward
interpretation in the exact context. When a Disc value 𝑣𝑒 is interpreted in a Cont context, one can
draw a sample 𝑣𝑠 from the exact distribution denoted by 𝑣𝑒 . However, we will show in the next
two sub-sections that a naive approach that fails to preserve key invariants will result in incorrect
inference results, and that one must maintain careful invariants in order to ensure soundness of
inference across boundaries.

2.2.1 Importance weighting. Let us more carefully consider the situation shown in Fig. 4a. First,
we observe that the desired semantics is J𝐹𝑖𝑔. 4𝑎K (true) = 0.25/0.4 = 0.625. Suppose we were to
follow a naive multi-language inference procedure of drawing 100 samples by eagerly evaluating
values for 𝑥 . Following Section 2.1.2, approximately 20 of these samples will yield the program in
Fig. 4b and approximately 80 will yield the program in Fig. 4c. Observe that J𝐹𝑖𝑔. 4𝑏K (true) = 0.25
and J𝐹𝑖𝑔. 4𝑐K (true) = 1. So our naive estimate J𝐹𝑖𝑔. 4𝑎K (true) would be:

J𝐹𝑖𝑔. 4𝑎K (true) ?≈ 20
100

J𝐹𝑖𝑔. 4𝑏K (true) + 80
100

J𝐹𝑖𝑔. 4𝑐K (true) = 0.85 (3)

Something went wrong – we expected the result of Eq. (3) to be 0.625. This naive sampling
approach significantly over-estimated J𝐹𝑖𝑔. 4𝑎K (true). The issue is that, in this naive approach, the
observation that occurs on Line 3 (Fig. 4a) is not taken into account when sampling a value for 𝑥 :
samples where 𝑥 = true are under-sampled relative to their true probability, and samples where
𝑥 = false are over-sampled.

This example illustrates that a naive approach to interoperation is unsound. To fix it, one approach
is to adjust the relative importance of each sample: we will still sample 𝑥 = true roughly 20% of
the time, but we will decrease the overall importance of this sample. The key idea comes from
importance sampling, which is a refinement of the expectation estimator given in Eq. (2) but enables
estimating an expectation E𝑝 [𝑋 ] by sampling from a proposal distribution 𝑞:

E𝑝 [𝑋 ] =
∫

𝑋 (𝑥)𝑝 (𝑥)𝑑𝑥 =

∫
𝑋 (𝑥) 𝑝 (𝑥)

𝑞(𝑥) 𝑞(𝑥)𝑑𝑥 = E𝑞

[
𝑋 (𝑥) 𝑝 (𝑥)

𝑞(𝑥)

]
. (4)

The above holds as long as the proposal 𝑞 supports 𝑝 (i.e., satisfies the property that, for all 𝑥 ,
if 𝑝 (𝑥) > 0 then 𝑞(𝑥) > 0). The ratio 𝑝 (𝑥)/𝑞(𝑥) is called the importance weight of the sample 𝑥 :
intuitively, if 𝑥 is more likely according to the true distribution 𝑝 than the proposal 𝑞, the importance
ratio will be greater than 1; similarly, if 𝑥 is less likely according to 𝑝 than 𝑞, its weight will be less
than 1. In this instance, the proposal 𝑞 is semantics of the program with all observe statements
deleted, and 𝑝 is J𝐹𝑖𝑔. 4𝑎K.

Unfortunately, already having access to 𝑝 defeats the purpose of approximating. In addition, our
programs 𝑝 always incorporate a normalization constant 𝑍 , such that

𝑝 (𝑥) = 𝑝 (𝑥)/𝑍, (5)
with 𝑝 being the unnormalized distribution. Summing the probability of 𝑝 for all 𝑥 in the domain
of 𝑝 yields 𝑍 =

∫
𝑝 (𝑥)𝑑𝑥 . Computing this normalization constant is expensive, and amounts to

calculating 𝑝 directly. In our setting, calculating this normalization constant is identical to the
denotation of Line 3 in the exact setting. To avoid solving for this in our importance sampler, we
can incorporate Eq. (5) into our expectation Eq. (4) and jointly approximate our query alongside 𝑍 ,

7



OOPSLA ’25, October 12–18, 2025, Singapore Stites, Li, and Holtzen

E𝑝 [𝑋 ] =
∫

𝑋 (𝑥)𝑝 (𝑥)𝑑𝑥 =

∫
𝑋 (𝑥)𝑝 (𝑥)𝑑𝑥∫

𝑝 (𝑥)𝑑𝑥
=

∫
𝑋 (𝑥) 𝑝 (𝑥 )

𝑞 (𝑥 ) 𝑞(𝑥)𝑑𝑥∫
𝑝 (𝑥 )
𝑞 (𝑥 ) 𝑞(𝑥)𝑑𝑥

=

E𝑥∼𝑞
[
𝑋 (𝑥) 𝑝 (𝑥 )

𝑞 (𝑥 )

]
E𝑥∼𝑞

[
𝑝 (𝑥 )
𝑞 (𝑥 )

] . (6)

The above is called a self-normalized importance sampler [44]. Here, in the denominator, we
construct the normalizing constant for 𝑞 to be the ratio of the unnormalized 𝑝 to 𝑞: the Line 2
in Fig. 4b when 𝑥 = true and the Line 2 in Fig. 4c when 𝑥 = false. Notice that the probability
of evidence encoded by observe statements in Fig. 4b and Fig. 4b are Jtrue ∨ 𝑌 K (true) = 1 and
Jfalse ∨ 𝑌 K (true) = 0.25, respectively.

Sampling 100 draws of 𝑥 , again, with 20 samples yielding the program in Fig. 4b and 80 samples
yielding the program in Fig. 4c, Eq. (6) now returns our expected result:

J𝐹𝑖𝑔. 4𝑎K (true) ≈
20
100 1 · J𝐹𝑖𝑔. 4𝑏K (true) +

80
100 0.25 · J𝐹𝑖𝑔. 4𝑐K (true)

20
100 1 +

80
100 0.25

=
20 · 0.25 + 80 · 0.25

20 + 20 = 0.625

Listing 2. Sample consistency

1 let 𝑋 be flip 0.5 in

2 L let 𝑦 be L𝑋 M𝑆 in
3 let 𝑧 be L𝑋 M𝑆 in
4 ret 𝑦 ∧ 𝑧 M𝐸

2.2.2 Sample consistency. Importance weighting is not all that is
necessary to ensure sound interoperability: we must also ensure
that Disc values are safely interpreted with a Cont context. Con-
sider the example in Listing 2. There are two observations to make
about this program. The first is that we embed a Cont program
into a Disc context; this results in a sampler that evaluates all Cont
fragments while preserving the semantics of all Disc variables in
order to produce a sample. The next thing to notice is that a Disc
program denotes a distribution; in the semantics of Cont, when
we come across a distribution a sample is immediately drawn from it.

Again, we can propose a naive strategy for performing inference on this program: one where we
draw a new sample each time we encounter a distribution. Notice that Line 2 holds a reference 𝑋
to flip 0.5, denoting a Bernoulli distribution. When we evaluate this boundary, with probability 1/2
we sample 𝑦 = true; suppose we sample 𝑦 = true. We encounter this reference, again, on Line 3
and suppose we sample 𝑧 = false. Finally, on Line 4, we evaluate the Boolean expression, resulting
in false, which is lifted into the Dirac-delta distribution in Disc. Running this program 𝑛 number of
times, we will expect to see the expectation of 𝑦 ∧ 𝑧 with 𝑦 and 𝑧 as two independent draws of the
fair Bernoulli distribution. At this point, something strange has occurred: by referencing a single
variable in Disc, we have simulated two independent flips.

Intuitively, the sampled value for 𝑧 must be the same as the sampled value for 𝑦. Operationally, to
ensure this is the case, any samples drawn across at the L− M𝑆 boundary additionally constraining
Disc program’s accepting criteria so that all subsequent samples remain consistent.

3 MULTIPPL: MULTI-LANGUAGE PROBABILISTIC PROGRAMMING

In this section we presentMultiPPL, a multilanguage that supports both exact and sampling-based
inference. Sections 3.1 and 3.2 describe the syntax of MultiPPL programs andMultiPPL’s type
system. We then present two semantic models of MultiPPL. First, Section 3.3 presents a high-level
modelHJ−K capturing the probability distribution generated by a MultiPPL program; this model
specifies the intended behavior of our implementation. Second, Section 3.4 presents a low-level
model LJ−K capturing our particular inference strategy; taking the intuition we have built up
in Section 2.2 and providing the precise way in which our implementation combines knowledge
compilation with importance sampling. Finally, Section 3.5 connects these two models: we show
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𝐴↭ 𝜏

unit↭ unit bool↭ bool

𝐴↭ 𝜏 𝐵↭ 𝜎

𝐴 × 𝐵↭ 𝜏 × 𝜎

Fig. 5. Rules for convertibility between Disc types 𝐴 and Cont types 𝜏 .

that LJ−K soundly refinesHJ−K, establishing sound inference interoperability between Disc and
Cont with respect to our inference strategy.

3.1 Syntax

The syntax of MultiPPL is given in Fig. 2.MultiPPL is a union of two sublanguages,Disc andCont,
that support exact and sampling-based inference. To streamline the presentation of the models in
Sections 3.3 and 3.4, each sublanguage is then subdivided into pure and effectful fragments.

The sampling-based sublanguage Cont is a first-order probabilistic programming language with
Booleans, tuples, and real numbers. In Cont, the pure fragment includes not only the basic opera-
tions on Booleans and pairs, but also arithmetic operations on real numbers. The effectful fragment
additionally includes primitive operations uniform 𝑒1 𝑒2 for generating uniformly-distributed real
numbers in the interval [𝑒1, 𝑒2], poisson 𝑒 for generating Poisson-distributed integers with rate 𝑒 ,
and obs-expressions denoting conditioning operators for these distributions.
The exact sublanguage Disc, reminiscent of Dice [23], is a discrete first-order probabilistic

programming language with Booleans and tuples. The pure fragment of Disc includes the basic
operations on Booleans and pairs, while the effectful fragment includes constructs for sequencing
and branching, as well as the primitive operations flip 𝑒 – for generating Bernoulli-distributed
Booleans with parameter 𝑒 of type real, and observe𝑀 – for conditioning on an event𝑀 .
The Disc branching construct if 𝑒 then 𝑀 else 𝑁 requires the guard 𝑒 to be a Cont term.

This is not an essential restriction, but rather required for sound inference interoperability with
respect to the specific implementation strategy we have chosen. As sketched in Sections 2.1.1
and 2.1.2, standard sampling-based inference maintains a weight for the current trace, while exact
inference maintains a weight map and an accepting formula. In our implementation, we wanted a
language whose inference algorithm would stay as close to these traditional inference algorithms as
possible while avoiding incorrect weighting schemes. To do this while maintaining safe inference
interoperability, one must have the rather subtle invariant that if-then-else expressions in the Disc
sublanguage have then- and else- branches that importance-weight their respective traces by the
same amount. The syntactic restriction on if 𝑒 then 𝑀 else 𝑁 is a simple way of ensuring this is
always the case: probabilistic choice is removed, and only one branch need ever be considered. In
our implementation, we also permit if-then-else expressions where both branches are boundary-
free Disc programs, as exact inference for such programs can be performed just as in Holtzen et al.
[23], without touching the importance weight. These special cases could be avoided by maintaining
an auxiliary Boolean formula tracking a path condition, which encodes during inference the then-
and else- branches of if-then-else expressions taken to reach a given subterm. This would allow
arbitrary if-then-else expressions in the Disc sublanguage, at the expense of additional overhead
of maintaining this path condition during inference. In our design of MultiPPL, we have decided
to restrict the syntax of the language rather than impose a performance cost; in practice, this has
been sufficient to express all of the examples in Section 4.

9
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Γ;Δ ⊢c 𝑀 : 𝐴

Δ ⊢ 𝑀 : 𝐴
Γ;Δ ⊢c ret𝑀 : 𝐴

Γ;Δ ⊢c 𝑀 : 𝐴 Γ;Δ, 𝑋 :𝐴 ⊢c 𝑁 : 𝐵
Γ;Δ ⊢c let 𝑋 be𝑀 in 𝑁 : 𝐵

Γ ⊢ 𝑒 : bool Γ;Δ ⊢c 𝑀 : 𝐴 Γ;Δ ⊢c 𝑁 : 𝐴
Γ;Δ ⊢c if 𝑒 then𝑀 else 𝑁 : 𝐴

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c flip 𝑒 : bool

Δ ⊢ 𝑀 : bool
Γ;Δ ⊢c observe𝑀 : unit

Γ;Δ ⊢c 𝑒 : 𝜏 𝐴↭ 𝜏

Γ;Δ ⊢c L 𝑒 M𝐸 : 𝐴

Γ;Δ ⊢c 𝑒 : 𝜏

Γ ⊢ 𝑒 : 𝜏
Γ;Δ ⊢c ret 𝑒 : 𝜏

Γ;Δ ⊢c 𝑒1 : 𝜎 Γ, 𝑥 :𝜎 ;Δ ⊢c 𝑒2 : 𝜏
Γ;Δ ⊢c let 𝑥 be 𝑒1 in 𝑒2 : 𝜏

Γ ⊢ 𝑒1 : bool Γ;Δ ⊢c 𝑒2 : 𝜏 Γ;Δ ⊢c 𝑒3 : 𝜏
Γ;Δ ⊢c if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c flip 𝑒 : bool

Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ;Δ ⊢c uniform 𝑒1 𝑒2 : real

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c poisson 𝑒 : real

Γ ⊢ 𝑒𝑜 : bool Γ ⊢ 𝑒1 : real
Γ;Δ ⊢c obs(𝑒𝑜 , flip 𝑒1) : unit

Γ ⊢ 𝑒𝑜 : real Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ;Δ ⊢c obs(𝑒𝑜 , uniform 𝑒1 𝑒2) : unit

Γ ⊢ 𝑒𝑜 : real Γ ⊢ 𝑒 : real
Γ;Δ ⊢c obs(𝑒𝑜 , poisson 𝑒) : unit

Γ;Δ ⊢c 𝑀 : 𝐴 𝐴↭ 𝜏

Γ;Δ ⊢c L𝑀 M𝑆 : 𝜏

Fig. 6. Typing rules for the effectful fragment of MultiPPL.

3.2 Typing

The syntax of types and typing contexts is given in Fig. 2. Disc types 𝐴 include Booleans and pairs;
Cont types 𝜏 additionally include a type of real numbers. A Disc typing context Δ is a mapping
of Disc variables to Disc types, and a Cont typing context Γ is a mapping of Cont variables to
Cont types. By convention we will denote Disc syntactic elements with capital letters and Cont
elements with lower-case Greek letters. This section is best read in color, where we use orange
monotype font for Cont terms and purple sans-serif font for Disc terms.
MultiPPL contains two sublanguages that each have a pure and effectful part, so there are

correspondingly four forms of typing judgment. For the pure fragments,
• Δ ⊢ 𝑀 : 𝐴 says the pure Disc term𝑀 has Disc type 𝐴 in Disc context Δ.
• Γ ⊢ 𝑒 : 𝜏 says the pure Cont term 𝑒 has Cont type 𝜏 in Cont context Γ.

These judgments are standard and deferred to the appendix.
The typing judgments for effectfulMultiPPL terms are parameterized by a combined context

Γ;Δ, as an effectful term may mention variables from both Disc and Cont via boundaries:
• Γ;Δ ⊢c 𝑀 : 𝐴 says the effectful Disc term𝑀 has Disc type 𝐴 in combined context Γ;Δ.
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JunitK = {★}
JboolK = {⊤,⊥}

J𝐴 × 𝐵K = J𝐴K × J𝐵K

JunitK = {★}
JboolK = {⊤,⊥}
JrealK = R

J𝜎 × 𝜏 K = J𝜎 K × J𝜏 K

JΔK =
∏

𝑋 ∈domΔ

JΔ(𝑋 ) K JΓK =
∏

𝑥 ∈dom Γ

JΓ (𝑥 ) K

Fig. 7. Interpreting types and typing contexts.

JΔ ⊢ 𝑀 : 𝐴K : JΔK→ J𝐴K

J𝑋 K(𝛿 ) = 𝛿 (𝑋 )
JtrueK(𝛿 ) = ⊤
JfalseK(𝛿 ) = ⊥

J𝑀 ∧ 𝑁 K(𝛿 ) =
{
⊤, if J𝑀 K(𝛿 ) = J𝑁 K(𝛿 ) = ⊤
⊥, otherwise

J¬𝑀 K(𝛿 ) =
{
⊥, if J𝑀 K(𝛿 ) = ⊤
⊤, otherwise

J⟨⟩K(𝛿 ) = ★

J⟨𝑀,𝑁 ⟩K(𝛿 ) = (J𝑀 K(𝛿 ), J𝑁 K(𝛿 ) )
Jfst𝑀 K(𝛿 ) = 𝜋1 (J𝑀 K(𝛿 ) )

Jsnd𝑀 K(𝛿 ) = 𝜋2 (J𝑀 K(𝛿 ) )

JΓ ⊢ 𝑒 : 𝜏 K : JΓK
measurable−−−−−−−→ J𝜏 K

J𝑥 K(𝛾 ) = 𝛾 (𝑥 )
JtrueK(𝛾 ) = ⊤

JfalseK(𝛾 ) = ⊥
J𝑟 K(𝛾 ) = 𝑟

J𝑒1 + 𝑒2K(𝛾 ) = J𝑒1K(𝛾 ) + J𝑒2K(𝛾 )
J− 𝑒K(𝛾 ) = − J𝑒K(𝛾 )

J𝑒1 · 𝑒2K(𝛾 ) = J𝑒1K(𝛾 ) · J𝑒2K(𝛾 )

J𝑒1 ≤ 𝑒2K(𝛾 ) =
{
⊤, if J𝑒1K(𝛾 ) ≤ J𝑒2K(𝛾 )
⊥, otherwise

J ( ) K(𝛾 ) = ★

J (𝑒1, 𝑒2 ) K(𝛾 ) = (J𝑒1K(𝛾 ), J𝑒2K(𝛾 ) )
Jfst 𝑒K(𝛾 ) = 𝜋1 (J𝑒K(𝛾 ) )
Jsnd 𝑒K(𝛾 ) = 𝜋2 (J𝑒K(𝛾 ) )

Fig. 8. Interpreting pure terms.

• Γ;Δ ⊢c 𝑒 : 𝜏 says the effectful Cont term 𝑒 has Cont type 𝜏 in combined context Γ;Δ.
These judgments are defined in Fig. 6. Note that in the rule for flip 𝑒 , the parameter 𝑒 can be
an arbitrary pure Cont term; this allows expressing the TwoCoins example from Section 2. In
principle, one could allow arbitrary effectful Cont programs 𝑒 as parameter to flip instead of
just pure ones, but we have not found this to be useful in practice. The typing judgments for the
boundaries L 𝑒 M𝐸 and L𝑀 M𝑆 allow converting Disc terms of type 𝐴 into Cont terms of type 𝜏 and
vice versa, so long as 𝐴 and 𝜏 are convertible, written 𝐴↭ 𝜏 . The convertibility relation is defined
in Fig. 5; it simply states that Disc types can be converted into their Cont counterparts in the
expected way, and that the Cont type real has no Disc counterpart.

3.3 High-level semantic model

This section defines a high-level model HJ−K of MultiPPL to serve as the definition of sound
inference interoperability for theMultiPPL multilanguage.

Setting aside details of any particular inference strategy, aMultiPPL program • ; • ⊢c 𝑒 : 𝜏 should
produce a conditional probability distribution over values of type 𝜏 . Following standard techniques
for modelling probabilistic programs with conditioning [55], we interpret types and typing contexts
as measurable spaces, pure terms as measurable functions, and effectful terms via a suitable monad.
Fig. 7 gives the interpretations of types and typing contexts. Disc types denote finite discrete

measurable spaces and Cont types denote arbitrary measurable spaces. These interpretations are
then lifted to typing contexts in the usual way: a Disc context Δ denotes the measurable space
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HJΓ;Δ ⊢c 𝑀 : 𝐴K : JΓK × JΔK→ DistwJ𝐴K

HJret𝑀 K(𝛾, 𝛿 ) = ret(J𝑀 K(𝛿 ) )

HJlet 𝑋 be𝑀 in 𝑁 K(𝛾, 𝛿 ) =
(
𝑥 ← HJ𝑀 K(𝛾, 𝛿 ) ;
HJ𝑁 K(𝛾, 𝛿 [𝑋 ↦→ 𝑥 ] )

)
HJL𝑒 M𝐸 K(𝛾, 𝛿 ) = HJ𝑒K(𝛾, 𝛿 )

H

u

w
v

if 𝑒

then𝑀

else 𝑁

}

�
~(𝛾, 𝛿 ) =

©«
if J𝑒K(𝛾 )
then HJ𝑀 K(𝛾, 𝛿 )
else HJ𝑁 K(𝛾, 𝛿 )

ª®®¬
HJflip 𝑒K(𝛾, 𝛿 ) = flip(J𝑒K(𝛾 ) )

HJobserve𝑀 K(𝛾, 𝛿 ) = score(1J𝑀 K(𝛿 )=⊤ )

HJΓ;Δ ⊢c 𝑒 : 𝜏 K : JΓK × JΔK→ DistwJ𝜏 K

HJret 𝑒K(𝛾, 𝛿 ) = ret(J𝑒K(𝛾 ) )

HJlet 𝑥 be 𝑒1 in 𝑒2K(𝛾, 𝛿 ) =
(
𝑥 ← HJ𝑒1K(𝛾, 𝛿 ) ;
HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥 ], 𝛿 )

) H

u

w
v

if 𝑒1

then 𝑒2

else 𝑒3

}

�
~(𝛾, 𝛿 ) =

©«
if J𝑒1K(𝛾 )
then HJ𝑒2K(𝛾, 𝛿 )
else HJ𝑒3K(𝛾, 𝛿 )

ª®®¬
HJL𝑀 M𝑆 K(𝛾, 𝛿 ) = HJ𝑀 K(𝛾, 𝛿 )

HJflip 𝑒K(𝛾, 𝛿 ) = flip(J𝑒K(𝛾 ) )

HJuniform 𝑒1 𝑒2K(𝛾, 𝛿 ) = uniform(J𝑒1K(𝛾 ), J𝑒2K(𝛾 ) )

HJpoisson 𝑒K(𝛾, 𝛿 ) = poisson(J𝑒K(𝛾 ) )
HJobs(𝑒𝑜 , flip 𝑒1 ) K(𝛾, 𝛿 ) = score(flip(J𝑒1K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) )

HJobs(𝑒𝑜 , poisson 𝑒1 ) K(𝛾, 𝛿 ) = score(poisson(J𝑒1K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) )
HJobs(𝑒𝑜 , uniform 𝑒1 𝑒2 ) K(𝛾, 𝛿 ) = score(uniform(J𝑒1K(𝛾 ), J𝑒2K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) )

Fig. 9. Interpreting effectful terms. We use Haskell-style syntactic sugar for the usual monad operations.

of substitutions 𝛿 such that 𝛿 (𝑥) ∈ JΔ(𝑥)K for all 𝑥 ∈ domΔ, and a Cont contexts Γ denotes the
measurable space of substitutions 𝛾 such that 𝛾 (𝑥) ∈ JΓ(𝑥)K for all 𝑥 ∈ dom Γ.
Fig. 8 gives the standard interpretations of pure terms [55]. Pure Disc terms Δ ⊢ 𝑀 : 𝐴 denote

functions J𝑀 K : JΔK→ J𝐴K, automatically measurable because every Disc type denotes a discrete
measurable space. Pure Cont terms Γ ⊢ 𝑒 : 𝜏 denote measurable functions J𝑒K : JΓK→ J𝜏 K.
Following Staton et al. [55], to interpret effectful terms we make use of the monad Distw𝐴 =

Dist( [0, 1] ×𝐴), obtained by combining the writer monad for the monoid ( [0, 1],×, 1) of weights
with the probability monad Dist [20]. Under this interpretation, aMultiPPL program • ; • ⊢c 𝑒 : 𝜏
denotes a distribution over pairs (𝑤, 𝑣), where 𝑣 is a value of type 𝜏 produced by a particular run of
𝑒 and𝑤 is the weight accumulated by both Cont and Disc observe expressions.

Fig. 9 interprets effectfulMultiPPL terms usingDistw. ADisc term Γ;Δ ⊢c 𝑀 : 𝐴 is interpreted as
a measurable functionHJ𝑀 K : JΓK× JΔK→ DistwJ𝐴K, and a Cont term Γ;Δ ⊢c 𝑒 : 𝜏 is interpreted
as a measurable functionHJ𝑒K : JΓK×JΔK→ DistwJ𝜏 K. To model the basic probabilistic operations,
the interpretation additionally makes use of the following primitives:
• (•) : Dist(𝐴) → Distw (𝐴) lifts distributions on 𝐴 into Distw by setting𝑤 = 1.
• score : [0, 1] → Distw{★} sends a weight𝑤 to the Dirac distribution 𝛿 (𝑤,★) centered at (𝑤,★).
• For 𝑝 ∈ R, flip(𝑝) is the Bernoulli distribution on {⊤,⊥} with parameter 𝑝 if 𝑝 ∈ [0, 1] and the
Dirac distribution 𝛿⊥ otherwise.
• For 𝑎, 𝑏 ∈ R, uniform(𝑎, 𝑏) is the uniform distribution on [𝑎, 𝑏] if 𝑎 ≤ 𝑏 and 𝛿min(𝑎,𝑏 ) otherwise.
• For 𝜆 ∈ R, poisson(𝜆) is the Poisson distribution with rate 𝜆 if 𝜆 > 0 and 𝛿0 otherwise.
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Boundaries have no effect under this interpretation, reflecting the idea that changing one’s inference
strategy should not change the inferred distribution; semantic values of Disc type are implicitly
coerced into semantic values of Cont type and vice versa, thanks to the following lemma:

Lemma 3.1 (natural embedding). If 𝐴↭ 𝜏 then J𝐴K = J𝜏 K.

Proof. By induction on 𝐴↭ 𝜏 . □

3.4 Low-level model

This section presents a low-level model LJ−K of MultiPPL, capturing the particular details of our
inference strategy.

The interpretations of types, typing contexts, and the pure fragment of MultiPPL are identical
to the ones given in Section 3.3. Where LJ−K differs fromHJ−K is in the interpretation of effectful
terms. Key to this interpretation is the construction of a suitable semantic domain for interpreting
effectful terms in a way that faithfully reflects the details of our implementation. We construct this
semantic domain by combining models of exact and sampling-based inference.

Our model of sampling-based inference is entirely standard, making use of the monad Distw of
Section 3.3. This monad captures the fact that a sampler performs inference by drawing weighted
samples from the distribution defined by a probabilistic program [55].
Our model of exact inference, on the other hand, is novel. As explained in Section 2.1.1 and

documented in full detail in Holtzen et al. [23], exact inference via knowledge compilation performs
inference by maintaining two pieces of state: a weight map 𝑤 associating Boolean literals to
probabilities, and a Boolean formula 𝛼 , called the accepting formula, that encodes the paths through
the program that do not violate observe statements. The final result of knowledge compilation is
itself a Boolean formula 𝜑 ; the posterior distribution can then be calculated by performing weighted
model counting on 𝜑 ∧ 𝛼 and 𝛼 with respect to the weight map𝑤 .

The defining trait of this knowledge compilation strategy is that it maintains an exact representa-

tion of the underlying probability space throughout probabilistic program execution. At any given
moment during knowledge compilation, there is an underlying sample space: the space of models
over the collection of Boolean variables generated so far. The purpose of the weight map𝑤 is to
represent a distribution over this sample space: the probability of a given model can be computed
by multiplying the weights of all of its literals. Together, the sample space and the weight map form
a probability space, which is statefully manipulated throughout the knowledge compilation process.
Upon each encounter of a flip command, the probability space grows: this is implemented by
generating a fresh Boolean variable to represent the result of the flip and extending𝑤 accordingly.
The purpose of the accepting formula 𝛼 is to represent an event in this probability space: the event
consisting of those models that satisfy 𝛼 . Upon each encounter of an observe command, this event
shrinks: this is implemented by conjoining the condition being observed onto 𝛼 . Finally, the purpose
of the output formula 𝜑 is to represent a random variable, which is to say a Boolean-valued function
out of the sample space: the formula 𝜑 represents the random variable that takes values ⊤ for those
models that satisfy 𝜑 and ⊥ otherwise.
What is essential about this setup is that it maintains a conditional probability space (Ω, 𝜇, 𝐸),

consisting of a sample space Ω (the space of models), a probability measure 𝜇 on it (represented by
the weight map), and an event 𝐸 denoting the result of all observe statements so far (represented
by the accepting formula), and that it produces random variables. The fact that these probability
spaces, events, and random variables are represented via weighted Boolean formulas, while crucial
for the efficiency of inference, are details of the implementation that are irrelevant to ensuring safe
inference interoperability. Because of this, our low-level semantics abstracts over these represen-
tation concerns, choosing instead to work directly with probability spaces and random variables.
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LJret𝑀 K(Ω) (𝛾, 𝐷 ) = ret(Ω, id, J𝑀 K ◦𝐷 )

LJlet 𝑋 be𝑀 in 𝑁 K(Ω) (𝛾, 𝐷 ) =
©«
(Ω1, 𝑓1, 𝑋 ) ← LJ𝑀 K(Ω) (𝛾, 𝐷 ) ;
(Ω2, 𝑓2, 𝑌 ) ← LJ𝑁 K(Ω1 ) (𝛾, (𝐷 ◦ 𝑓1 ) [𝑋 ↦→ 𝑋 ] ) ;
ret(Ω2, 𝑓1 ◦ 𝑓2, 𝑌 )

ª®®¬
LJif 𝑒 then𝑀 else 𝑁 K(Ω) (𝛾, 𝐷 ) =

©«
if J𝑒K(𝛾 )
then LJ𝑀 K(Ω) (𝛾, 𝐷 )
else LJ𝑁 K(Ω) (𝛾, 𝐷 )

ª®®¬
LJflip 𝑒K(Ω) (𝛾, 𝐷 ) =

©«

𝑝 := if J𝑒K(𝛾 ) ∈ [0, 1] then J𝑒K(𝛾 ) else 0;
Ωflip := ({0, 1}, 𝜇, {0, 1}) where 𝜇 (1) = 𝑝 ;

Ω′ := Ω ⊗ Ωflip;

𝑋 := 𝜔 ′ ↦→ if 𝜋2 (𝜔 ′ ) = 1 then ⊤ else ⊥;
ret(Ω′, 𝜋1, 𝑋 )

ª®®®®®®®¬
LJobserve𝑀 K(Ω, 𝜇, 𝐸 ) (𝛾, 𝐷 ) =

©«
𝐹 := (J𝑀 K ◦𝐷 )−1 (⊤) ;

score(𝜇 |𝐸 (𝐹 ) ) ;
ret( (Ω, 𝜇, 𝐸 ∩ 𝐹 ), id, _ ↦→ ★)

ª®®®¬
LJL𝑒 M𝐸 K(Ω) (𝛾, 𝐷 ) =

(
(Ω′, 𝑓 , 𝑥 ) ← LJ𝑒K(Ω) (𝛾, 𝐷 ) ;
ret(Ω′, 𝑓 , _ ↦→ 𝑥 )

)

LJret 𝑒K(Ω) (𝛾, 𝐷 ) = ret(Ω, id, J𝑒K(𝛾 ) )

LJlet 𝑥 be 𝑒1 in 𝑒2K(Ω) (𝛾, 𝐷 ) =
©«
(Ω1, 𝑓1, 𝑥 ) ← LJ𝑒1K(Ω) (𝛾, 𝐷 )
(Ω2, 𝑓2, 𝑦) ← LJ𝑒2K(Ω1 ) (𝛾 [𝑥 ↦→ 𝑥 ], 𝐷 ◦ 𝑓1 )
ret(Ω2, 𝑓1 ◦ 𝑓2, 𝑦)

ª®®¬
LJif 𝑒1 then 𝑒2 else 𝑒3K(Ω) (𝛾, 𝐷 ) =

©«
if J𝑒1K(𝛾 )
then LJ𝑒2K(Ω) (𝛾, 𝐷 )
else LJ𝑒3K(Ω) (𝛾, 𝐷 )

ª®®¬
LJflip 𝑒K(Ω) (𝛾, 𝐷 ) =

(
𝑥 ← flip(J𝑒K(𝛾 ) )
ret(Ω, id, 𝑥 )

)
LJuniform 𝑒1 𝑒2K(Ω) (𝛾, 𝐷 ) =

(
𝑥 ← uniform(J𝑒1K(𝛾 ), J𝑒2K(𝛾 ) )
ret(Ω, id, 𝑥 )

)
LJpoisson 𝑒K(Ω) (𝛾, 𝐷 ) =

(
𝑥 ← poisson(J𝑒K(𝛾 ) )
ret(Ω, id, 𝑥 )

)
LJobs(𝑒𝑜 , flip 𝑒1 ) K(Ω) (𝛾, 𝐷 ) =

(
score(flip(J𝑒1K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) ) ;
ret(Ω, id,★)

)
LJobs(𝑒𝑜 , uniform 𝑒1 𝑒2 ) K(Ω) (𝛾, 𝐷 ) =

(
score(uniform(J𝑒1K(𝛾 ), J𝑒2K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) ) ;
ret(Ω, id,★)

)
LJobs(𝑒𝑜 , poisson 𝑒1 ) K(Ω) (𝛾, 𝐷 ) =

(
score(poisson(J𝑒1K(𝛾 ) ) (J𝑒𝑜 K(𝛾 ) ) ) ;
ret(Ω, id,★)

)

LJL𝑀 M𝑆 K(Ω) (𝛾, 𝐷 ) =
©«
( (Ω′, 𝜇′, 𝐸′ ), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω) (𝛾, 𝐷 )
𝑥 ←

(
𝜔 ′ ← 𝜇′ |𝐸′ ; ret(𝑋 (𝜔 ′ ) )

)
ret( (Ω′, 𝜇′, 𝐸′ ∩ 𝑋 −1 (𝑥 ) ), 𝑓 , 𝑥 )

ª®®®¬
Fig. 10. Low-level interpretation of effectfulMultiPPL terms. Parts crucial for sound inference interoperability

are highlighted, appearing in the denotation of observe𝑀 and L𝑀 M𝑆 . Best read in color.
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Following Li et al. [27], we model Disc programs as statefully manipulating tuples (Ω, 𝜇, 𝐸) and
producing random variables 𝑋 . For example, we model running the effectful Disc program

𝑋 : bool ⊢𝑐
©«
let 𝑌 be flip 1/2 in
observe (𝑋 ∧ 𝑌 ) in
ret 𝑋

ª®®¬ : bool

given input probability space (Ω, 𝜇, 𝐸) and random variable 𝑋 : Ω → JboolK as follows:
• flip 1/2 expands the probability space from (Ω, 𝜇, 𝐸) to (Ω× JboolK , 𝜇 ⊗ Ber 1/2, 𝐸 × JboolK), and
produces the Boolean random variable 𝑌 : Ω × JboolK→ JboolK defined by 𝑌 (𝜔,𝑏) = 𝑏. This is
implemented by generating a new Boolean variable representing 𝑌 . Note that 𝑌 is defined in
terms of the new sample space Ω×JboolK. The function 𝜋1 : Ω×JboolK→ Ω says how to convert
between the old sample space Ω and the new sample space Ω × JboolK: the random variable 𝑋 ,
defined in terms of the old space Ω, can be converted into a random variable 𝑋 ◦ 𝜋1 defined in
terms of the new space Ω × JboolK by precomposition with 𝜋1. Similarly, the conditioning set
𝐸, a subset of the old space Ω, can be converted into a conditioning set 𝜋−11 (𝐸) = 𝐸 × JboolK on
the new sample space Ω × JboolK. In the implementation, these conversions are no-ops: they
amount to the fact that a Boolean formula over Boolean variables Γ can be weakened to a Boolean
formula over variables Γ, 𝑥 .
• observe (𝑋 ∧ 𝑌 ) shrinks the new conditioning set 𝐸 × JboolK by intersecting it with the subset
𝐺 := {(𝜔,𝑏) | 𝑋 (𝜔) = 𝑌 (𝑏) = ⊤} of Ω × JboolK on which 𝑋 and 𝑌 are both ⊤; this produces a
new conditioning set (𝐸 × JboolK) ∩𝐺 . This is implemented by conjoining the Boolean formula
representing 𝑋 ∧ 𝑌 onto the accepting formula.

In general, we will interpret MultiPPL programs in a semantic domain that combines this stateful
approach to modelling exact inference with the standard Distw-based approach to modelling
sampling-based inference: a MultiPPL program Γ;Δ ⊢c 𝑀 : 𝐴 denotes a function that receives:
(1) a concrete instantiation 𝛾 ∈ JΓK for free Cont variables
(2) a probability space Ω and a random variable 𝐷 ∈ Ω → JΔK for free Disc variables,

and uses the monad Distw to produce a weighted sample consisting of a new probability space Ω′
and a random variable𝑋 ∈ Ω′ → J𝐴K of outputs. The old and new probability spaces are connected
by a function 𝑓 : Ω′ → Ω, which says how to convert random variables and events defined in
terms of the old space into random variables and events defined on the new one. The following
definitions make this idea precise.

Definition 3.2. A finite conditional probability space is a triple (Ω, 𝜇, 𝐸) where (1) Ω is a finite
set; (2) 𝜇 : Ω → [0, 1] is a discrete probability distribution, and (3) 𝐸 is a subset of Ω called the
conditioning set. Let FCPS be the collection of finite conditional probability spaces.

Definition 3.3. A map of finite conditional probability spaces 𝑓 : (Ω, 𝜇, 𝐸) → (Ω′, 𝜇′, 𝐸′) is a
measure-preserving map 𝑓 : (Ω, 𝜇) → (Ω′, 𝜇′) such that 𝐸 ⊆ 𝑓 −1 (𝐸′). For two finite conditional
probability spaces (Ω, 𝜇, 𝐸) and (Ω′, 𝜇′, 𝐸′), let (Ω, 𝜇, 𝐸) FCPS−−−−→ (Ω′, 𝜇′, 𝐸′) be the set of maps from
(Ω, 𝜇, 𝐸) to (Ω′, 𝜇′, 𝐸′).
Note: For readability, finite conditional probability spaces (Ω, 𝜇, 𝐸) will be written Ω unless

disambiguation is needed.

With these two definitions in hand, we can give a precise description to the semantic domains
used to construct our low-level model of effectful MultiPPL terms. Given a finite conditional
probability space Ω as input, an effectful Disc term Γ;Δ ⊢c 𝑀 : 𝐴 sends a pair of substitutions for
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free Disc and Cont variables to a distribution over weighted samples consisting of a new finite
conditional probability space Ω′ and a random variable Ω′ → J𝐴K of outputs:

LJΓ;Δ ⊢c 𝑀 : 𝐴K(Ω) : JΓK × (Ω → JΔK) → Distw

( ∐
Ω′∈FCPS

(Ω′ FCPS−−−−→ Ω) × (Ω′ → J𝐴K)
)

The notation
∐

Ω′∈FCPS (Ω′
FCPS−−−−→ Ω) × (Ω′ → J𝐴K) denotes an indexed coproduct: an element of

this set is a tuple (Ω′, 𝑓 , 𝑋 ) consisting of a new finite conditional probability space Ω′, a map of
finite conditional probability spaces 𝑓 : Ω′ → Ω connecting the old and new sample spaces, and a
random variable 𝑋 defined on the new sample space.
Analogously, an effectful Cont term Γ;Δ ⊢c 𝑒 : 𝜏 sends a pair of substitutions to a distribution

over weighted samples consisting of a new finite conditional probability space Ω′ and a value
𝑣 ∈ J𝜏 K:

LJΓ;Δ ⊢c 𝑒 : 𝜏 K(Ω) : JΓK × (Ω → JΔK) → Distw

( ∐
Ω′∈FCPS

(Ω′ FCPS−−−−→ Ω) × J𝜏 K

)
The semantic equations defining LJΓ;Δ ⊢c 𝑀 : 𝐴K(Ω) and LJΓ;Δ ⊢c 𝑒 : 𝜏 K(Ω) are given in Fig. 10.
As in Fig. 9, we continue to use Haskell-style syntactic sugar for the Distw monad operations. The
interpretation of effectful Cont programs is largely similar to the one given byHJ−K; the primary
difference is the plumbing of probability spaces Ω and maps 𝑓 throughout. The interpretation
of effectful Disc programs statefully manipulates the probability space as sketched earlier: flip 𝑒
expands the probability space from Ω to Ω ⊗ Ωflip, where Ωflip is a freshly-generated probability
space supporting a Bernoulli-distributed random variable with parameter 𝑒 , and observe𝑀 shrinks
the conditioning set from 𝐸 to 𝐸 ∩ 𝐹 , where 𝐹 is the subset of the sample space on which𝑀 is ⊤.
Maps of conditional probability spaces 𝑓 are used to convert random variables from old to new
sample spaces throughout.
The interpretation of the Cont-to-Disc boundary L 𝑒 M𝐸 is to draw a weighted sample 𝑥 from 𝑒

and return the constant random variable at 𝑥 . Conversely, the interpretation of the Disc-to-Cont
boundary L𝑀 M𝑆 is to compute the random variable 𝑋 denoted by 𝑀 and then return a sample
𝑥 drawn from the distribution of 𝑋 . The parts of Fig. 10 shown in bold ensure sound inference
interoperability: in the interpretation of L𝑀 M𝑆 , the event 𝑋 −1 (𝑥) is added to the conditioning set to
ensure sample consistency; in the interpretation of observe𝑀 , the statement score(𝜇 |𝐸 (𝐹 )) performs
importance weighting, to ensure the weight of the current execution remains correct relative to
other possible executions.1

3.5 Soundness

This section presents our main theoretical result: the low-level model LJ−K capturing our inference
strategy soundly refines the high-level modelHJ−K; that is, given a complete MultiPPL program
𝑒 , weighted samples drawn from 𝑒 according to our knowledge-compilation- and importance-
sampling-based inference strategy follow the same distribution as samples drawn according to
HJ−K. To make this precise, we first define what it means to run a completeMultiPPL program,
and what it means for two distributions over weighted samples to be equivalent.

Definition 3.4. For a closed program • ; • ⊢c 𝑒 : 𝜏 , let evalL (𝑒) be the computation((_, _, 𝑥) ← LJ𝑒K(emp) (∅, ∅);
ret 𝑥

)
: DistwJ𝜏 K

1Here, 𝜇 |𝐸 is the distribution 𝜇 conditioned on the event E.
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where ∅ is the empty substitution, emp is the unique 1-point probability space. Let evalH (𝑒) be the
computationHJ𝑒K(∅, ∅) : DistwJ𝜏 K.

Definition 3.5. Two computations 𝜇, 𝜈 : Distw𝐴 are equal as importance samplers, written 𝜇 ≃ 𝜈 , if
for all bounded integrable 𝑘 : 𝐴→ R it holds that E(𝑎,𝑥 )∼𝜇 [𝑎 · 𝑘 (𝑥)] = E(𝑏,𝑦)∼𝜈 [𝑏 · 𝑘 (𝑦)].

With these definitions in hand, our soundness theorem states that our inference strategy agrees
with the high-level model up to equality of importance samplers.

Theorem 3.6 (soundness). If • ; • ⊢c 𝑒 : 𝜏 then evalL (𝑒) ≃ evalH (𝑒).

Theorem 3.6 is proved by induction on typing, after suitable strengthening of the theorem
statement from closed to open terms. The essence of the proof boils down to two key lemmas. The
first lemma allows swapping the order of sampling and scoring, and is crucial to the correctness of
our importance reweighting scheme in interpreting observe:

Lemma 3.7. If (Ω, 𝜇, 𝐸) ∈ FCPS then
©«
𝜔 ← 𝜇;
score(1𝜔∈𝐸);
ret 𝜔

ª®®¬ ≃
©«
score(𝜇 (𝐸));
𝜔 ← 𝜇 |𝐸 ;
ret 𝜔

ª®®¬.
The second lemma says that sampling twice — from a marginal on 𝑋 to get a sample 𝑥 , then from

the conditional distribution given 𝑋 = 𝑥 — is the same as sampling once from the joint distribution,
and is crucial to ensuring sample consistency in our implementation of the boundary L𝑀 M𝑆 .

Lemma 3.8. If (Ω, 𝜇, 𝐸) ∈ FCPS and 𝑋 : Ω → 𝐴 with 𝐴 finite, then

©«
𝑥 ←

(
𝜔 ← 𝜇; ret(𝑋𝜔)

)
;

𝜔 ′ ← 𝜇 |𝑋 −1 (𝑥 ) ;
ret(𝑥,𝜔)

ª®®¬ =

(
𝜔 ′ ← 𝜇;
ret(𝑋𝜔 ′, 𝜔 ′)

)
.

The full details can be found in Appendix A.7.

4 EVALUATION

In Section 3 we described the theoretical underpinnings of MultiPPL and proved it sound. In this
section we provide implementation details and empirical evidence for the utility of MultiPPL by
measuring its scalability on well-known inference tasks and comparing its performance against
existing probabilistic programming systems. We conclude with a discussion of our evaluation and
how these programs relate to the design space of MultiPPL programs.

4.1 Lightweight Extensions to MultiPPL

The semantics described in Section 3 provide a minimal model of multi-language interoperation
that is simple and correct. In our implementation we extend the semantics of Disc and Cont to
support more features, resulting in a practical and flexible language.

4.1.1 Extensions to Cont. Importance-sampling languages often include more features than those
described in Cont. The grammar for Cont, shown in Fig. 2, supports three base distributions:
Bernoulli, Uniform, and Poisson distributions. In our implementation we include many more
distributions including Normal, Beta, and Dirichlet distributions, as well as their corresponding
observation expressions. We also extend Cont with unbounded loops and list data structures.
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4.1.2 Extensions to Disc. Our implementation of Disc directly leverages the BDD library of
Dice [23] and includes support for integers as described in Holtzen et al. [23]. Integers can be
introduced into a Disc program either by embedding a Cont integer or through new syntax in
Disc representing a discrete distribution. Both terms are translated into one-hot encoded tuples of
Boolean variables: Cont integers are translated dynamically, while discrete categorical distributions
are translated by the compiler statically into the Disc grammar shown in Fig. 2.

4.2 Empirical evaluation

MultiPPL programs encompass a vast design space, including both Cont and Disc programs as
well any interleaving of these two languages. To investigate the efficacy of our implementation
and characterize this landscape, we ask the following questions:
(1) DoesMultiPPL capture enough expressive power to represent interesting and practical probabilistic

structure while maintaining competitive performance? We consider four benchmarks with com-
plex conditional independence structures to illustrate the design space of MultiPPL programs.
We draw on models in the domains of network analysis [18, 25] and Bayesian networks [5, 7].

(2) How does MultiPPL compare with contemporary PPLs in using exact and approximate inference

with respect to wall-clock time and distance from the exact distribution? To answer this question,
we benchmark against state-of-the-art PPLswhich handle both discrete and continuous variables:
PSI [19], performing exact inference by compilation, and Pyro [8], using its importance sampling
infrastructure for approximate inference.

4.2.1 Experimental Setup. For exact inference, PSI is a best-in-class language that encodes both
discrete and continuous variables using its compiled symbolic approach. For approximate inference
we leverage Pyro’s importance sampling infrastructure. MultiPPL is written in Rust and performs
both knowledge compilation and sampling during runtime evaluation when it encounters a Disc
or Cont program, respectively. To unify the comparison between these disparate settings, we
delineate our evaluation criteria along two metrics of sample efficiency and sample quality.
The sample efficiency of each inference strategy is defined as the wall-clock time to draw 1000

samples; measured in seconds and recorded in “Time(s)” column of the following figures. Comparing
the performance of inference algorithms implemented in different languages is a general challenge.
To account for the difference in overhead, we treat Cont as our baseline in the approximate setting.

Sample quality is also important and we computed the L1-distance (i.e., the difference of absolute
values) between a ground-truth answer, derived for each task, and the estimated quantity from
sampling. Tasks that only evaluate exact inference always yield an L1-distance of 0: for these tasks
we only report wall-clock time, and we only draw one sample from the MultiPPL program.

Heuristically, our aim in writingMultiPPL programs is to achieve high quality samples using
Disc while maintaining reasonable wall-clock efficiency with Cont. While this guides the design
of our evaluation, users must decide how this trade-off effects their models on a case-by-case basis.
All benchmarks involving approximate inference are performed using a fixed budget of 1000

samples and all statistics collected are averaged over 100 independent trials.2

4.2.2 Estimating packet arrival. Our first evaluation comes from the motivating example of Fig. 1.
For this arrival task we are interested in modeling packets traversing a router network and observe
the presence, or absence, of packets at their destination. Our main interest is in some unobservable
router that lives along the traversal path, and we query the expected number of packets which pass
through this node. The router network in our evaluation has a tree-based topology that uses an
2All evaluations are run on a single thread of an AMD EPYC 7543 Processor with 2.8GHz and 500 GiB of RAM. A software
artifact is available on Zenodo[56] and GitHub (https://github.com/stites/multippl)
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Model PSI Pyro MultiPPL (Cont) MultiPPL
L1 Time(s) L1 Time(s) L1 Time(s) L1 Time(s)

arrival/tree-15 — — 0.365 12.713 0.355 0.247 0.337 0.349
arrival/tree-31 — — 0.216 26.366 0.218 0.561 0.179 0.754
arrival/tree-63 — — 0.118 53.946 0.120 1.469 0.093 1.912

alarm t/o t/o 1.290 16.851 1.173 0.433 0.364 14.444
insurance t/o t/o 0.149 13.724 0.144 1.104 0.099 11.406

gossip/4 — — 0.119 6.734 0.119 0.720 0.118 0.812
gossip/10 — — 0.533 6.786 0.531 1.561 0.524 1.373
gossip/20 — — 0.747 7.064 0.745 3.565 0.750 2.888

Fig. 11. Empirical results of our benchmarks of the arrival, discrete Bayesian network, and gossip tasks.

“MultiPPL (Cont)” shows the evaluation of a baseline Cont program with no boundary crossings into Disc,

evaluations under the “MultiPPL” column performs interoperation. “t/o” indicates a timeout beyond 30

minutes, and “—” indicates that the problem is not expressible in PSI because of an unbounded loop.

start

(a) The arrival network topology.

𝑛 ∼ Poisson(𝜆 = 3)
𝑞 ← 0
while 𝑛 > 0 do

𝑞 ← 𝑞 + network()
𝑛 ← 𝑛 − 1

end while
return 𝑞

(b) Pseudocode describing arrival task.

Fig. 12. Implementation-generic details for the packet-arrival task. Shown in 12a, a packet traverses the

network by entering the bottom-left most node, annotated by the start arrow. We observe a successful

traversal to the gray-filled node, and we query the double-circle node for its posterior distribution. The PSI,

Pyro, and MultiPPL programs all follow pseudocode shown in 12b, where network models the topology.

equal-cost multipath (ECMP) protocol [24], as shown in Fig. 12a. The ECMP protocol dictates that
a packet is forwarded with uniform probability to all neighboring routers with equal distance to
the goal, as shown in Fig. 12a. In this scenario, 𝑛 packets traverse the network where 𝑛 is drawn
from a Poisson distribution with a rate of 3, as described in Fig. 12b. The presence of this Poisson
random variable makes this example quite challenging for many existing PPL inference strategies
because the resulting loop has a statically unbounded number of iterations. We made the following
additional design decisions in making this task:
(1) Evidence:We observe the gray node of the network topology depicted in Fig. 12a.
(2) Query: We query the expected probability that the packet traverses through a central node of

the tree-topology, depicted by the twice-circled node of Fig. 12a.
(3) Boundary decisions: Cont models the Poisson distribution and outer loop. One boundary

call is made to the network, defined in Disc.
(4) Scaling:We scale this model to topologies of 15, 31, and 63 nodes.
(5) Ground truth: Our ground truth is defined by writing a Dice program for the network, and

analytically solving for the expected number of packets.
The rows labeled by “arrival” in Fig. 11 summarize the evaluation for this section. This table shows

thatMultiPPL’s samples are significantly higher quality than Pyro’s and the Cont program in this
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experiment. As the topology increases in size, we see that theMultiPPL program is able to produce
increasingly higher quality samples with respect to L1 distance. This is becauseMultiPPL is able
to exactly compute packet reachability of a single traversal in increasingly larger networks using
Disc, while still able to express sampling from the Poisson distribution in Cont. TheMultiPPL
program performing interoperation is an order of magnitude more efficient than Pyro, however
the Cont alternative is still most efficient with regard to wall-clock time and yields similar quality
samples as Pyro. PSI, using its symbolic inference procedure, fails to model the unbounded loop.

4.2.3 Querying discrete Bayesian networks. Bayesian networks [41] provide a challenging and
practical source of programs with widespread adoption across numerous domains, including
medicine [1, 38], healthcare [5], and actuarial sciences [7]. Even in the purely-discrete setting,
Bayesian networks remain a practical challenge when evaluating exact inference strategies due to
the complex independence structures intrinsic to this domain.

In this task we study interoperation of our language by modeling two discrete Bayesian networks:
ALARM [5] and Insurance [7]. These networks pose a scaling challenge for exact inference, and
form the largest models described in our evaluation: ALARM contains 509 flip primitives and the
Insurance network contains 1008 flip primitives. Modeling the entirety of the network in Disc and
sampling 1000 times will result in a time-out for our evaluation, and we must use interoperation to
increase sample quality while keeping sample efficiency competitive in our benchmark.
The ALARM network models a system for patient monitoring, while the Insurance network

estimates the expected costs for a car insurance policyholder. We summarize these tasks as follows:
(1) Evidence: In both models, we observed one or more leaf nodes.
(2) Query:We query all root nodes for both of the Bayesian networks.
(3) Boundary decisions: Variables are defined in Disc or Cont to heuristically maximize the

degree of exact inference permitted while keeping the wall-clock time within 60 seconds.
(4) Scaling: ALARM contains 509 flip primitives and Insurance contains 1008 flip primitives.
(5) Ground truth: The ground truth is defined by an equivalent Dice program.
The Cont model, with similar sample quality to Pyro, is more efficient than its MultiPPL

counterpart in this evaluation. It is also significantly more efficient than Pyro and PSI (which timed
out on this benchmark). As an importance sampler, Cont and Pyro simply sample each distribution
directly, and we see the Python overhead slowing down the Pyro model.
OurMultiPPL programs demonstrate superior sample quality to the Pyro and Cont models.

We achieve this by declaring boundaries that split the ALARM and Insurance networks into sub-
networks that are modeled exactly with Disc and keep compiled BDD sizes small. However it
should be noted that placement of boundaries tips the scales in a tradeoff between quality and
efficiency. Optimal interleaving between Cont and Disc is task-sensitive, and the MultiPPL
programs evaluated only demonstrate a best-effort approach to modeling.

4.2.4 Network takeover with a gossip protocol. The gossip protocol is a common peer-to-peer
communication method for distributed systems. In our setting each packet traverses an undirected,
fully-connected network using a FIFO scheduler for transport. At each time step, indicated by a
tick in the scheduler, a server will schedule two additional packets to all of its neighbors with each
destination drawn i.i.d. from a uniform distribution. This task initializes with a compromised node
which sends two infected packets to its neighbors. When a server receives an infected packet, it
becomes compromised and can only propagate infected packets for the remainder of the evaluation.
Taken from Gehr et al. [18], we sample 𝑛 time steps from a uniform distribution, step 𝑛 times, then
query the model for the expected number of compromised servers.
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(a) Topology of the gossip network.

init← 0
steps ∼ Uniform(4, 8)
state←

(true, false, false, false)
deque← []
for 𝑛 = 1, 2 do

s ∼ Discrete( 13 ,
1
3 ,

1
3 );

deque← s+1 :: deque
end for

while steps > 0 do
cur← head(deque);
deque← tail(deque);
state[cur]← state[cur] ∨ true
for 𝑛 = 1, 2 do

s ∼ Discrete( 13 ,
1
3 ,

1
3 );

ix← if (s < cur) { s } else { s + 1 };
deque← deque ++ [ix]

end for
steps← steps - 1

end while
return state

(b) Pseudocode for a gossip network task.

Fig. 13. Implementation-generic details of the gossip network task. The 4-node topology of the undirected

network is shown in 13a. Pseudocode to iterate over each time step is provided in 13b.

This evaluation poses an expressivity challenge to the Disc sub-language, which cannot define
the dynamic-length FIFO queue without interoperation with Cont. To handle this requirement, we
extend Cont to support lists and define all discrete random variables in Disc. At each end of the
loop we update our queue in Cont, collapsing any compiled BDDs.
(1) Evidence: This task defines a direct sampler and no evidence is given.
(2) Query: The model queries for the expected number of compromised servers after 𝑛 steps.
(3) Boundary decisions: Discrete variables are in Disc, the loop and FIFO queue live in Cont.
(4) Scaling: This network scales from 4- to 10- and 20- nodes.
(5) Ground truth: The PSI model from Gehr et al. [18] was used to generate the ground truth

for a statically defined set of time steps. An enumerative model was also defined to count the
number of states. The expectation of these models over the loop is derived analytically.
In Fig. 11, we see that all terminating evaluations have similar L1-distances, with Pyro and Cont

programs producing slightly better quality samples. The MultiPPL model produces more efficient
samples, on average, which speaks to the minimal overhead of interoperation when knowledge
compilation plays a small role in inference. There is also the possibility that BDDs are cached and
reused, resulting in a small speedup for some intermediate samples drawn from Disc.
As this benchmark comes with a PSI implementation from Gehr et al. [18], we provided a best-

effort attempt at getting this to run including limiting the number of time steps to make the task
more tractable, but we were unable reproduce their results within our 30m evaluation window.

4.2.5 Estimating network reliability. The network reliability task is interested in a single packet’s
traversal through a network using a probabilistic routing protocol that is embedded in a larger
network. As a model only involving discrete random variables, we can observe how interoperation
effects sample quality and efficiency by looking at programs defined in Cont, Disc, and in an
optimal interoperation configuration. Consider, again the ECMP protocol from Section 4.2.2. In
this task we modify each router with non-uniform probabilities, as a packet can traverse out of the
sub-network. The sub-network itself is a directed grid, shown in Fig. 14a, with the probability of
traversal being dependent on the packet’s origin. Pseudocode for the model is presented in Fig. 14b.

This benchmark observes a packet arriving at the final node in the sub-network, and queries the
probability that this packet passes through each router in the model. As there are no continuous
random variables involved, we can model this task using either exact or approximate inference.
(1) Evidence: The final node in the network topology observes a successful packet traversal.
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(a) Topology of a 9-node network

𝑛00∼ Bern 1
3

𝑛01∼ if 𝑛00 then Bern 1
4 else Bern 1

5
𝑛10∼ if ¬𝑛00 then Bern 1

4 else Bern 1
5

𝑝 ← if 𝑛10 ∨ 𝑛01 then 1
6 else

𝑛10 ∨ ¬𝑛01 then 1
7 else

¬𝑛10 ∨ 𝑛01 then 1
8 else 1

9
𝑛11∼ Bern 𝑝

observe 𝑛11= ⊤
return (𝑛00, 𝑛01, 𝑛10, 𝑛11)

(b) Pseudocode of a 4-node model

Fig. 14. An overview of the reliability task, with the topology of the 9-node network in 14a: a packet is

observed in the node shaded gray and all nodes are queried for their posterior distribution. In 14b we show

the pseudocode for a 4-node reliability task, similar structure is used for networks with 9-, 36-, and 81-nodes.

# Nodes PSI MultiPPL (Disc) Pyro MultiPPL (Cont) MultiPPL
Time(s) Time(s) L1 Time(s) L1 Time(s) L1 Time(s)

9 546.748 0.001 0.080 3.827 0.079 0.067 0.033 0.098
36 t/o 0.089 1.812 14.952 0.309 0.277 0.055 1.169
81 t/o 40.728 7.814 33.199 0.680 0.887 0.079 81.300

Fig. 15. Exact and approximate results for models performing approximate inference

(2) Query: The model queries for the marginal probability on all nodes in the network.
(3) Boundary decisions: MultiPPL programs (in column “MultiPPL” of table Fig. 15), model the

minor upper- and lower- triangles of the network topology in Disc and perform interoperation
along the minor diagonal to break the exact inference task into two parts. This maximizes the
size of compiled BDDs while providing orders of magnitude improvement in sample efficiency.

(4) Scaling: This network scales in the size of the grid, scaling from 9- to 36- to 81- nodes.
(5) Ground truth: An equivalent Dice model was used as the ground truth for this model.
The first two columns of Fig. 15 show the results of exact compilation; comparing PSI to Disc

programs (column “MultiPPL (Disc)”). Because of the nature of this evaluation, Disc can represent
the exact posterior of the model and produce perfect samples with competitive efficiency for small
programs. As the program grows in size, producing samples take considerably longer: scaling with
the size of the underlying logical formula.
The partially-collapsed and fully-sampled MultiPPL programs are compared to Pyro in the

remaining columns of Fig. 15.MultiPPL programs (column “MultiPPL”) are defined in Disc and
model the minor diagonal of the network’s grid in Cont. Programs fully defined in Cont (column
“MultiPPL (Cont)”) sample each node individually in the same manner as Pyro.

In this evaluation Cont is more efficient andMultiPPL programs effectively leverage Disc’s
knowledge compilation to produce higher-quality samples. For smaller models, the definedMul-
tiPPL programs have efficiency competitive to Cont. As the model scales, the overhead of knowl-
edge compilation increases. This can be seen by noting the single-sample efficiency ofDisc programs
from our exact evaluation. As the MultiPPL program scales to 81 nodes the sample efficiency
decreases, suggesting an alternative collapsing scheme may be preferable for larger programs.
This network reliability evaluation, alongside prior evaluations, demonstrates thatMultiPPL

consistently produces higher quality samples compared to alternatives in the approximate setting.
Through these evaluations, we find that MultiPPL does capture enough expressive power to
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represent interesting and practical probabilistic structure while remaining competitive with other
languages. That said, the performance of MultiPPL’s inference poses a nuanced landscape and we
leave a full characterization of this design space to future work.

5 RELATEDWORK

Multi-language interoperation between probabilistic programming languages builds on a wide body
of work spanning the programming language and the machine learning communities. We situate
our research in four categories: heterogeneous inference, programmable inference, multi-language
semantics, and the monadic semantics of probabilistic programming languages.

5.1 Heterogeneous inference in probabilistic programming languages. There are existing probabilis-
tic programming languages and systems that enable users to blend different kinds of inference
algorithms when performing inference on a single probabilistic program. Particularly relevant
are approaches that leverage Rao-Blackwellization in order to combine exact and approximate
inference strategies into a single system. Within this vein, Atkinson et al. [2] introduced semi-

symbolic inference, where the idea is to perform exact marginalization over distributions whose
posteriors can be determined to have some closed-form solution. Other works that use variations of
Rao-Blackwellization [21, 33, 37] all seek to explicitly marginalize out portions of the distribution
by using closed-form exact posteriors when feasible. The main difference between these approaches
to Rao-Blackwellization and our proposed approach is that these systems do not expose separate
languages that correspond to different phases of the inference algorithm: they provide a single
unified syntax in which the user programs. As a consequence, they all rely on (semi-)automated
means of automatically discovering which portions can be feasibly Rao-Blackwellized; this process
can be difficult to control and lead to unpredictable performance. Our multi-language approach has
the following benefits: (1) predictable and interpretable performance due to the explicit choice of in-
ference algorithm that is exposed to the user; and (2) amenability to modular formalization, since we
can verify the correctness of each inference strategy and verify the correctness of their composition
on the boundary. We hope to incorporate the interesting ideas of these related works intoMultiPPL,
in particular closed-form approaches to exact marginalization of continuous distributions.
There is a broad literature on heterogeneous inference that we hope to eventually draw on to

build a richer vocabulary of sub-languages to add toMultiPPL. Friedman and Van den Broeck [17]
described an approach to collapsed approximate inference that dynamically blends exact inference
via knowledge compilation and approximate inference via sampling; we are curious if this can be
integrated with our system. We also look towards incorporating more stateful inference algorithms
such as Markov-Chain Monte Carlo into MultiPPL, and aim to investigate this in future work.

5.2 Programmable inference. Programmable inference (or inference (meta-)programming) provide
probabilistic programmers with a meta-language for defining new inference algorithms within a
single PPL by offering language primitives that give direct access to the inference runtime [29].
Cusumano-Towner et al. [12] provides a black-box interface to underlying inference algorithms
alongside combinators to operate on these interfaces, Stites et al. [57] designs a domain specific
language (DSL) for inference which produces correct-by-construction importance weights.

We see programmable inference as a viable means of designing new inference algorithms which
we can incorporate into a multi-language. Furthermore, a multi-language setting can offer inference
programmers the ability to abstract away the nuances of the inference process, lowering the barrier
to entry for this type of development. One common thread through much of the work on inference
programming is core primitives which encapsulate the building blocks for inference algorithms
including resample-move sequential Monte Carlo, variational inference, many other Markov chain
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Monte Carlo methods. These primitives could be designed formally as DSLs, which would be a
great addition to a multi-language and something we look forward to developing in future work.

5.3 Nested inference. Nested inference enriches a probabilistic programming language with a
first-class infer or normalize construct that enables the programmer to query for the probability
of an event inside their probabilistic programs [3, 42, 54, 58, 63]. Nested inference is a useful
programming construct that enables a variety of new applications, such as in cognitive science
where one agent may wish to reason about the intent of another [58]. Nested inference is similar in
spirit to our multi-language approach in that it gives the programmer control over when inference is
performed on their program and what inference algorithm is used. A key difference between nested
inference and our multi-language approach is that the former provides access to the inference result
whereas MultiPPL’s boundary forms do not. This difference is essential. In our view, there is the
following analogy to non-probabilistic programming: performing nested inference is like invoking
a compiler and inspecting the resulting binary, whereas performing multi-language inference is
like interoperating through an FFI. In the non-probabilistic setting, these two situations require
distinct semantic models — compare, for example, formal models of introspection and dynamic code
generation [6, 15, 28, 30, 52] with formal models of FFI-based interoperability [22, 26, 31, 39, 45] —
and we believe the same is likely true of our probabilistic setting.
In the future, it would be interesting to consider integrating nested inference within a multi-

language setting and exploring the consequences of this new feature on language interoperation. It
would also be quite interesting to investigate whether our multi-language inference strategy could
be compiled to, or expressed in terms of, rich nested inference constructs. A preliminary analysis
reveals a number of basic differences between MultiPPL’s inference strategy and standard models
of nested inference, so such a compilation scheme would likely require significant modifications to
nested inference — for a detailed technical discussion, see Appendix B.

5.4 Multi-language semantics. Today, it is often the case that probabilistic programming languages
are embedded in a host, non-probabilistic language [4]. However, these PPLs assume their host
semantics will not interfere with the semantics of the PPL’s inference process. This work is the
first of its kind to build on top of multi-language semantics to reason about inference algorithms.
Multi-language semantics, while new to the domain of probabilistic programming, has had a

large impact on the broader programming language community. They play a fundamental role in
reasoning about interoperation [39], gradual typing [35, 59], and compositional compiler verifica-
tion [45]. There are two styles of calculi which represent the current approaches to multi-language
interoperation. These are the multi-languages approach from Matthews and Findler [31] and the a
more fine-grained approach by Siek and Taha [49] using a gradually typed lambda calculus.

Ye et al. [62] takes a traditional programming language approach to the gradual typing of PPLs
and defines a gradually typed probabilistic lambda calculus which allows a user to migrate a PPL
from an untyped- to typed- language — a nontrivial task involving a probabilistic coupling argument
for soundness. In contrast, our work centers on how multi-languages can help the interoperation
of inference algorithms across semantic domains.

Baydin et al. [4] establishes, informally, a common interface for PPLs to interact with scientific
simulators across language boundaries. In this work, the semantics of the simulator is a black-box
distribution defined in some language, which may or may not be probabilistic, and a separate
PPL may interact with the simulator during the inference process. While Baydin et al. [4] works
across language boundaries, they do not reason about interoperation — they only involve one
inference algorithm — and they do not provide any soundness guarantees. That said, Baydin et al.
[4] demonstrates a simple boundary allowing for rapid integration of many practical probabilistic
programming languages, something we also strive for.
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5.5 Monadic semantics of PPLs. Numerous monads have been developed for use as semantic
domains that capture the various notions of computation used in probabilistic inference. The
fundamental building block for each of these models is the probability monad Dist, along with its
generalizations to monads of subdistributions and measures [20]. Using this probability monad to
give semantics to probabilistic programs goes back to at least Ramsey and Pfeffer [43], who further
build on this basic setup by introducing measure terms to efficiently answer expectation-based
queries. Staton et al. [55] make use of the writer monad transformer applied to themonoid of weights
to obtain a monad suitable for modelling probabilistic programs with score-based conditioning; we
have made essential use of this monad to define the two semantic models of MultiPPL presented
in Section 3. Ścibior [48] use monad transformer stacks, implemented in Haskell, to obtain a variety
of sampling-based inference algorithms in a compositional manner, with each layer of the stack
encompassing a different component of an inference algorithm. Our semantics of MultiPPL builds
on this line of work in giving monadic semantics to probabilistic computations by providing a
model of exact inference via knowledge compilation in terms of stateful manipulation of finite
conditional probability spaces and random variables. In future work, we intend to investigate
whether this state-passing semantics can be packaged into a monad of its own, capturing the notion
of computation carried out when performing knowledge compilation, by making use of recent
constructions in categorical probability [50, 51].

6 CONCLUSION

Performing inference on models with a mix of continuous and discrete random variables is an
important modeling challenge for practical systems andMultiPPL offers a multi-language approach
to tackle this problem. In this work, we provide a sound denotational semantics that generalizes for
all exact inference algorithms and sampling-based approximate inference that satisfy our semantic
domains. We identify two requirements to establish the correctness of the interoperation described:
that the exact PPL must maintain sample consistency and that the approximate sampling-based PPL
must perform importance weighting. We demonstrate that our implementation of MultiPPL benefits
from the expressiveness of Cont and makes practical problems representable and additionally
provides tractable inference from Disc for complex discrete-structured probabilistic programs.

Ultimately, we hope that our multi-language perspective can lead to a clean formal unification of
many probabilistic program semantics and inference strategies. For future work, we hope to extend
our semantics to incorporate local-search inference strategies such as sequential and Markov-Chain
Monte Carlo. With enough coverage across semantics, we also gain the opportunity to look at
probabilistic interoperation by inspecting a shared core calculus for inference, and would draw on
work from Patterson [40]. Finally, by providing a syntactic approach to inference interoperation,
we also open up opportunities to use static analysis to see when and how we might automatically
insert boundaries to further specialize a model’s inference algorithm.
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A APPENDIX

A.1 Syntax

Disc Expressions 𝑀, 𝑁 ::= 𝑋 | true | false |𝑀 ∧ 𝑁 | ¬𝑀
| ⟨⟩ | ⟨𝑀, 𝑁 ⟩ | fst𝑀 | snd𝑀

| ret𝑀 | let 𝑋 be𝑀 in 𝑁 | if 𝑒 then𝑀 else 𝑁

| flip 𝑒 | observe𝑀 | L 𝑒 M𝐸
Types 𝐴, 𝐵 ::= unit | bool | 𝐴 × 𝐵
Contexts Δ ::= 𝑋1 : 𝐴1, . . . , 𝑋𝑛 : 𝐴𝑛

Cont Expressions 𝑒 ::= 𝑥 | true | false | 𝑟 | 𝑒1 + 𝑒2 | − 𝑒 | 𝑒1 · 𝑒2 | 𝑒1 ≤ 𝑒2
| () | (𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒
| ret 𝑒 | let 𝑥 be 𝑒1 in 𝑒2 | if 𝑒1 then 𝑒2 else 𝑒3
| 𝑑 | obs(𝑒𝑜 , 𝑑) | L𝑀 M𝑆

Distributions 𝑑 ::= flip 𝑒 | uniform 𝑒1 𝑒2 | poisson 𝑒
Types 𝜎, 𝜏 ::= unit | bool | real | 𝜎 × 𝜏
Contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
Number literals 𝑟 ∈ R

A.2 Typing rules

A.2.1 Convertibility.

unit↭ unit bool↭ bool

𝐴↭ 𝜏 𝐵↭ 𝜎

𝐴 × 𝐵↭ 𝜏 × 𝜎
A.2.2 Pure exact sublanguage.

Δ(𝑋 ) = 𝐴

Δ ⊢ 𝑋 : 𝐴 Δ ⊢ true : bool Δ ⊢ false : bool
Δ ⊢ 𝑀 : bool Δ ⊢ 𝑁 : bool

Δ ⊢ 𝑀 ∧ 𝑁 : bool

Δ ⊢ 𝑀 : bool
Δ ⊢ ¬𝑀 : bool Δ ⊢ ⟨⟩ : unit

Δ ⊢ 𝑀 : 𝐴 Δ ⊢ 𝑁 : 𝐵
Δ ⊢ ⟨𝑀, 𝑁 ⟩ : 𝐴 × 𝐵

Δ ⊢ 𝑀 : 𝐴 × 𝐵
Δ ⊢ fst𝑀 : 𝐴

Δ ⊢ 𝑀 : 𝐴 × 𝐵
Δ ⊢ snd𝑀 : 𝐵

A.2.3 Effectful exact sublanguage.

Δ ⊢ 𝑀 : 𝐴
Γ;Δ ⊢c ret𝑀 : 𝐴

Γ;Δ ⊢c 𝑀 : 𝐴 Γ;Δ, 𝑋 :𝐴 ⊢c 𝑀 : 𝐵
Γ;Δ ⊢c let 𝑋 be𝑀 in 𝑁 : 𝐵

Γ ⊢ 𝑒 : bool Γ;Δ ⊢c 𝑀 : 𝐴 Γ;Δ ⊢c 𝑁 : 𝐴
Γ;Δ ⊢c if 𝑒 then𝑀 else 𝑁 : 𝐴

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c flip 𝑒 : bool

Δ ⊢ 𝑀 : bool
Γ;Δ ⊢c observe𝑀 : unit

Γ;Δ ⊢c 𝑒 : 𝜏 𝐴↭ 𝜏

Γ;Δ ⊢c L 𝑒 M𝐸 : 𝐴
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A.2.4 Pure sampling sublanguage.

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏 Γ ⊢ true : bool Γ ⊢ false : bool Γ ⊢ 𝑟 : real

Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ ⊢ 𝑒1 + 𝑒2 : real

Γ ⊢ 𝑒 : real
Γ ⊢ − 𝑒 : real

Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ ⊢ 𝑒1 · 𝑒2 : real

Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ ⊢ 𝑒1 ≤ 𝑒2 : bool Γ ⊢ () : unit

Γ ⊢ 𝑒1 : 𝜎 Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ (𝑒1, 𝑒2) : 𝜎 × 𝜏

Γ ⊢ 𝑒 : 𝜎 × 𝜏
Γ ⊢ fst 𝑒 : 𝜏

Γ ⊢ 𝑒 : 𝜎 × 𝜏
Γ ⊢ snd 𝑒 : 𝜏

A.2.5 Effectful sampling sublanguage.

Γ ⊢ 𝑒 : 𝜏
Γ;Δ ⊢c ret 𝑒 : 𝜏

Γ;Δ ⊢c 𝑒1 : 𝜎 Γ, 𝑥 :𝜎 ;Δ ⊢c 𝑒2 : 𝜏
Γ;Δ ⊢c let 𝑥 be 𝑒1 in 𝑒2 : 𝜏

Γ ⊢ 𝑒1 : bool Γ;Δ ⊢c 𝑒2 : 𝜏 Γ;Δ ⊢c 𝑒3 : 𝜏
Γ;Δ ⊢c if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c flip 𝑒 : bool

Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ;Δ ⊢c uniform 𝑒1 𝑒2 : real

Γ ⊢ 𝑒 : real
Γ;Δ ⊢c poisson 𝑒 : real

Γ;Δ ⊢c 𝑀 : 𝐴 𝐴↭ 𝜏

Γ;Δ ⊢c L𝑀 M𝑆 : 𝜏

Γ ⊢ 𝑒𝑜 : bool Γ ⊢ 𝑒1 : real
Γ;Δ ⊢c obs(𝑒𝑜 , flip 𝑒1) : unit

Γ ⊢ 𝑒𝑜 : real Γ ⊢ 𝑒1 : real Γ ⊢ 𝑒2 : real
Γ;Δ ⊢c obs(𝑒𝑜 , uniform 𝑒1 𝑒2) : unit

Γ ⊢ 𝑒𝑜 : real Γ ⊢ 𝑒 : real
Γ;Δ ⊢c obs(𝑒𝑜 , poisson 𝑒) : unit

A.3 Semantics of types

A.3.1 Types.

J𝐴K : finite discrete measurable space
JunitK = the one-point space {★}
JboolK = {⊤,⊥}

J𝐴 × 𝐵K = J𝐴K × J𝐵K

J𝜏 K : measurable space
JunitK = the one-point space {★}
JboolK = the discrete two-point space {⊤,⊥}
JrealK = R
J𝜎 × 𝜏 K = J𝜎 K × J𝜏 K
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A.3.2 Contexts.

JΓK : measurable space

JΓK =
∏

𝑥∈dom Γ

JΓ(𝑥)K

JΔK : finite discrete measurable space

JΔK =
∏

𝑋 ∈domΔ

JΔ(𝑋 )K

A.3.3 Convertibility.

Lemma A.1. If 𝐴↭ 𝜏 then J𝐴K = J𝜏 K.

Proof. By induction on 𝐴↭ 𝜏 . □

A.4 Semantics of pure programs

JΔ ⊢ 𝑀 : 𝐴K : JΔK→ J𝐴K
J𝑋 K(𝛿) = 𝛿 (𝑋 )

JtrueK(𝛿) = ⊤
JfalseK(𝛿) = ⊥

J𝑀 ∧ 𝑁 K(𝛿) =
{
⊤, if J𝑀 K(𝛿) = J𝑁 K(𝛿) = ⊤
⊥, otherwise

J¬𝑀 K(𝛿) =
{
⊥, if J𝑀 K(𝛿) = ⊤
⊤, otherwise

J⟨⟩K(𝛿) = ★

J⟨𝑀, 𝑁 ⟩K(𝛿) = (J𝑀 K(𝛿), J𝑁 K(𝛿))
Jfst𝑀 K(𝛿) = 𝜋1 (J𝑀 K(𝛿))

Jsnd𝑀 K(𝛿) = 𝜋2 (J𝑀 K(𝛿))
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JΓ ⊢ 𝑒 : 𝜏 K : JΓK
measurable−−−−−−−−→ J𝜏 K

J𝑥 K(𝛾) = 𝛾 (𝑥)
JtrueK(𝛾) = ⊤

JfalseK(𝛾) = ⊥
J𝑟 K(𝛾) = 𝑟

J𝑒1 + 𝑒2K(𝛾) = J𝑒1K(𝛾) + J𝑒2K(𝛾)
J− 𝑒K(𝛾) = − J𝑒K(𝛾)

J𝑒1 · 𝑒2K(𝛾) = J𝑒1K(𝛾) · J𝑒2K(𝛾)

J𝑒1 ≤ 𝑒2K(𝛾) =
{
⊤, if J𝑒1K(𝛾) ≤ J𝑒2K(𝛾)
⊥, otherwise

J ()K(𝛾) = ★

J (𝑒1, 𝑒2)K(𝛾) = (J𝑒1K(𝛾), J𝑒2K(𝛾))
Jfst 𝑒K(𝛾) = 𝜋1 (J𝑒K(𝛾))
Jsnd 𝑒K(𝛾) = 𝜋2 (J𝑒K(𝛾))

A.5 Effectful programs: high-level model

Definition A.2. Let Dist be the distribution monad defined over measurable spaces. Let Distw
be the writer monad transformer applied to Dist and the monoid ( [0, 1], 1) of nonegative reals
under multiplication. Concretely, Distw sends a measurable space 𝐴 to the set Dist( [0, 1] × 𝐴).
Let ret 𝑥 and 𝑥 ← 𝜇; 𝑓 (𝑥) denote the usual monad operations with respect to Distw, and let
(·) : Dist(𝐴) → Distw (𝐴) be the usual lifting operation. In addition to the usual operations,
• Let score : [0, 1] → Distw{★} be the function that sends a weight 𝑤 to the Dirac distribution
𝛿 (𝑤,★) centered at (𝑤,★).

Definition A.3. For 𝑝 ∈ R, let flip(𝑝) be the Bernoulli distribution with parameter 𝑝 if 𝑝 ∈ [0, 1],
and a point mass at ⊥ otherwise.

Definition A.4. For 𝑎, 𝑏 ∈ R, let uniform(𝑎, 𝑏) be the uniform distribution on the interval [𝑎, 𝑏] if
𝑎 ≤ 𝑏, and a point mass at min(𝑎, 𝑏) otherwise.

Definition A.5. For 𝜆 ∈ R, let poisson(𝜆) be the Poisson distribution with parameter 𝜆 if 𝜆 > 0,
and a point mass at 0 otherwise.
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A.5.1 Exact sublanguage.

HJΓ;Δ ⊢c 𝑀 : 𝐴K : JΓK × JΔK→ DistwJ𝐴K
HJret𝑀 K(𝛾, 𝛿) = ret(J𝑀 K(𝛿))

HJlet 𝑋 be𝑀 in 𝑁 K(𝛾, 𝛿) =
(
𝑥 ←HJ𝑀 K(𝛾, 𝛿);
HJ𝑁 K(𝛾, 𝛿 [𝑋 ↦→ 𝑥])

)

HJif 𝑒 then𝑀 else 𝑁 K(𝛾, 𝛿) =
©«
if J𝑒K(𝛾)
thenHJ𝑀 K(𝛾, 𝛿)
elseHJ𝑁 K(𝛾, 𝛿)

ª®®¬
HJflip 𝑒K(𝛾, 𝛿) = flip(J𝑒K(𝛾))

HJobserve𝑀 K(𝛾, 𝛿) = score(1J𝑀 K(𝛿 )=⊤)
HJL 𝑒 M𝐸 K(𝛾, 𝛿) = HJ𝑒K(𝛾, 𝛿)

A.5.2 Sampling sublanguage.

HJΓ;Δ ⊢c 𝑒 : 𝜏 K : JΓK × JΔK→ DistwJ𝜏 K
HJret 𝑒K(𝛾, 𝛿) = ret(J𝑒K(𝛾))

HJlet 𝑥 be 𝑒1 in 𝑒2K(𝛾, 𝛿) =
(
𝑥 ←HJ𝑒1K(𝛾, 𝛿);
HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥], 𝛿)

)

HJif 𝑒1 then 𝑒2 else 𝑒3K(𝛾, 𝛿) =
©«
if J𝑒1K(𝛾)
thenHJ𝑒2K(𝛾, 𝛿)
elseHJ𝑒3K(𝛾, 𝛿)

ª®®¬
HJflip 𝑒K(𝛾, 𝛿) = flip(J𝑒K(𝛾))

HJuniform 𝑒1 𝑒2K(𝛾, 𝛿) = uniform(J𝑒1K(𝛾), J𝑒2K(𝛾))

HJpoisson 𝑒K(𝛾, 𝛿) = poisson(J𝑒K(𝛾))
HJL𝑀 M𝑆 K(𝛾, 𝛿) = HJ𝑀 K(𝛾, 𝛿)

HJobs(𝑒𝑜 , flip 𝑒1)K(𝛾, 𝛿) = score (flip(J𝑒1K(𝛾)) (J𝑒𝑜 K(𝛾)))
HJobs(𝑒𝑜 , poisson 𝑒1)K(𝛾, 𝛿) = score (poisson(J𝑒K(𝛾)) (J𝑒𝑜 K(𝛾)))

HJobs(𝑒𝑜 , uniform 𝑒1 𝑒2)K(𝛾, 𝛿) = score (uniform(J𝑒1K(𝛾), J𝑒2K(𝛾)) (J𝑒𝑜 K(𝛾)))

A.6 Effectful programs: low-level model

Definition A.6. A finite conditional probability space is a triple (Ω, 𝜇, 𝐸) where (1) Ω is a nonempty
finite prefix of N, (2) 𝜇 : Ω → [0, 1] is a discrete probability distribution, and (3) 𝐸 is a subset of Ω.
Let FCPS be the set of finite conditional probability spaces.

For readability, finite conditional probability spaces (Ω, 𝜇, 𝐸) will be written Ω unless disam-
biguation is needed.

Lemma A.7. FCPS is a measurable space.

Proof. There is an injective function 𝑖 : FCPS ↩→ N× list(R) ×PfinN sending a finite conditional
probability space ({0, . . . , 𝑛 − 1}, 𝜇, 𝐸) to the triple (𝑛, [𝜇 (0), . . . , 𝜇 (𝑛 − 1)], 𝐸). The codomain of 𝑖 is
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a measurable space with 𝜎-algebra defined in the standard way, and the image of 𝑖 is a measurable
subset of this space. The injection 𝑖 identifies the image of 𝑖 with FCPS, making FCPS a measurable
space by taking preimages along 𝑖 . □

Definition A.8. A map of finite conditional probability spaces 𝑓 : (Ω, 𝜇, 𝐸) → (Ω′, 𝜇′, 𝐸′) is a
measure-preserving map 𝑓 : (Ω, 𝜇) → (Ω′, 𝜇′) such that 𝐸 ⊆ 𝑓 −1 (𝐸′). For two finite conditional
probability spaces (Ω, 𝜇, 𝐸) and (Ω′, 𝜇′, 𝐸′), let (Ω, 𝜇, 𝐸) FCPS−−−−→ (Ω′, 𝜇′, 𝐸′) be the set of maps from
(Ω, 𝜇, 𝐸) to (Ω′, 𝜇′, 𝐸′).

Definition A.9. For every 𝐴 and 𝜏 let M𝐴 and M𝜏 be the following FCPS-indexed families of sets:
M𝐴 : FCPS→ Set

M𝐴Ω = Distw

( ∑︁
Ω′∈FCPS

(Ω′ FCPS−−−−→ Ω) × (Ω′ → J𝐴K)
)

M𝜏 : FCPS→ Set

M𝜏Ω = Distw

( ∑︁
Ω′∈FCPS

(Ω′ FCPS−−−−→ Ω) × J𝜏 K

)
Proof. For these to be well-defined, the arguments toDistw must be measurable spaces. Elements

of
∑

Ω′∈FCPS (Ω′
FCPS−−−−→ Ω) × (Ω′ → J𝐴K) are triples (Ω′, 𝑓 , 𝑋 ) where Ω′ ∈ FCPS and 𝑓 is a map of

finite conditional probability spaces and 𝑋 : Ω′ → J𝐴K. There is a canonical injective function
𝑖 from this set to the set FCPS × (N fin−−→ N) × (N fin−−→ J𝐴K) whose elements are triples (Ω′, 𝑓 , 𝑋 )
where Ω′ ∈ FCPS and 𝑓 , 𝑋 are partial functions of type N ⇀ N and N ⇀ J𝐴K respectively
with finite domain. This set is a measurable space by Lemma A.7 and by putting the discrete
𝜎-algebras on N

fin−−→ N and N
fin−−→ J𝐴K. The image of 𝑖 is a measurable subset of this space, making∑

Ω′∈FCPS (Ω′
FCPS−−−−→ Ω) × (Ω′ → J𝐴K) a measurable space too. The analogous argument also makes∑

Ω′∈FCPS (Ω′
FCPS−−−−→ Ω) × J𝜏 K into a measurable space. □

Definition A.10. For two finite conditional probability spaces (Ω, 𝜇, 𝐸) and (Ω′, 𝜇′, 𝐸′), their tensor
product, written (Ω, 𝜇, 𝐸) ⊗ (Ω′, 𝜇′, 𝐸′), is (𝑓 (Ω ×Ω′), 𝜈 ◦ 𝑓 −1, 𝑓 (𝐸 ×𝐸′)) where 𝜈 : Ω ×Ω′ → [0, 1]
is the measure 𝜈 (𝜔,𝜔 ′) = 𝜇 (𝜔)𝜇′ (𝜔 ′) and 𝑓 is an arbitrary isomorphism Ω×Ω′ → {1, . . . , |Ω | |Ω′ |}
(such as 𝑓 (𝜔,𝜔 ′) = |Ω′ |𝜔 + 𝜔 ′). There are canonical projection maps

𝜋1 : (Ω, 𝜇, 𝐸) ⊗ (Ω′, 𝜇′, 𝐸′) → (Ω, 𝜇, 𝐸) and 𝜋2 : (Ω, 𝜇, 𝐸) ⊗ (Ω′, 𝜇′, 𝐸′) → (Ω′, 𝜇′, 𝐸′).
The tensor product has a unit, written emp, defined as (Ωemp, 𝜇emp, 𝐸emp) where Ωemp = 𝐸emp = {0}
and 𝜇 (0) = 1.

Definition A.11. To model sampling from finite conditional probability spaces,
• For any nonempty set Ω, let zeroΩ : Distw (𝐴) be the Dirac distribution at (0, 𝜈) : [0, 1] ×Ω where
𝜈 is an arbitrary element of Ω.
• For any finite conditional probability space (Ω, 𝜇, 𝐸), let 𝜇 |𝐸 : Distw (Ω) be zeroΩ if 𝜇 (𝐸) = 0, and
the lifting of the conditional distribution of 𝜇 given 𝐸 if 𝜇 (𝐸) > 0.
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A.6.1 Exact sublanguage.

LJΓ;Δ ⊢c 𝑀 : 𝐴K(Ω) : JΓK × (Ω → JΔK) → M𝐴 (Ω)
LJret𝑀 K(Ω) (𝛾, 𝐷) = ret(Ω, id, J𝑀 K ◦ 𝐷)

LJlet 𝑋 be𝑀 in 𝑁 K(Ω) (𝛾, 𝐷) =
©«
(Ω1, 𝑓1, 𝑋 ) ← LJ𝑀 K(Ω) (𝛾, 𝐷);
(Ω2, 𝑓2, 𝑌 ) ← LJ𝑀 K(Ω1) (𝛾, (𝐷 ◦ 𝑓1) [𝑋 ↦→ 𝑋 ]);
ret(Ω2, 𝑓1 ◦ 𝑓2, 𝑌 )

ª®®¬
LJif 𝑒 then𝑀 else 𝑁 K(Ω) (𝛾, 𝐷) =

©«
if J𝑒K(𝛾)
then LJ𝑀 K(Ω) (𝛾, 𝐷)
else LJ𝑁 K(Ω) (𝛾, 𝐷)

ª®®¬
LJflip 𝑒K(Ω) (𝛾, 𝐷) =

©«

𝑝 := if J𝑒K(𝛾) ∈ [0, 1] then J𝑒K(𝛾) else 0;
Ωflip := ({0, 1}, 𝜇, {0, 1}) where 𝜇 (1) = 𝑝;
Ω′ := Ω ⊗ Ωflip;
𝑋 := 𝜔 ′ ↦→ if 𝜋2 (𝜔 ′) = 1 then ⊤ else ⊥;
ret(Ω′, 𝜋1, 𝑋 )

ª®®®®®®®¬
LJobserve𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷) =

©«
𝐹 := (J𝑀 K(Ω) (𝐷))−1 (⊤);
score(𝜇 |𝐸 (𝐹 ));
ret((Ω, 𝜇, 𝐸 ∩ 𝐹 ), id,★)

ª®®¬
LJL 𝑒 M𝐸 K(Ω) (𝛾, 𝐷) =

(
(Ω′, 𝑓 , 𝑥) ← LJ𝑒K(Ω) (𝛾, 𝐷);
ret(Ω′, 𝑓 , _ ↦→ 𝑥)

)
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A.6.2 Sampling sublanguage.

LJΓ;Δ ⊢c 𝑒 : 𝜏 K(Ω) : JΓK × (Ω → JΔK) → M𝜏 (Ω)
LJret 𝑒K(Ω) (𝛾, 𝐷) = ret(Ω, id, J𝑒K(𝛾))

LJlet 𝑥 be 𝑒1 in 𝑒2K(Ω) (𝛾, 𝐷) =
©«
(Ω1, 𝑓1, 𝑥) ← LJ𝑒1K(Ω) (𝛾, 𝐷)
(Ω2, 𝑓2, 𝑦) ← LJ𝑒2K(Ω1) (𝛾 [𝑥 ↦→ 𝑥], 𝐷 ◦ 𝑓1)
ret(Ω2, 𝑓1 ◦ 𝑓2, 𝑦)

ª®®¬
LJif 𝑒1 then 𝑒2 else 𝑒3K(Ω) (𝛾, 𝐷) =

©«
if J𝑒1K(𝛾)
then LJ𝑒2K(Ω) (𝛾, 𝐷)
else LJ𝑒3K(Ω) (𝛾, 𝐷)

ª®®¬
LJflip 𝑒K(Ω) (𝛾, 𝐷) =

(
𝑥 ← flip(J𝑒K(𝛾))
ret(Ω, id, 𝑥)

)
LJuniform 𝑒1 𝑒2K(Ω) (𝛾, 𝐷) =

(
𝑥 ← uniform(J𝑒1K(𝛾), J𝑒2K(𝛾))
ret(Ω, id, 𝑥)

)
LJpoisson 𝑒K(Ω) (𝛾, 𝐷) =

(
𝑥 ← poisson(J𝑒K(𝛾))
ret(Ω, id, 𝑥)

)

LJobs(𝑒𝑜 , flip 𝑒1)K(Ω) (𝛾, 𝐷) =
©«
𝑤 := flip(J𝑒1K(𝛾)) (J𝑒𝑜 K(𝛾))
score(𝑤);
ret(Ω, id,★)

ª®®¬
LJobs(𝑒𝑜 , uniform 𝑒1 𝑒2)K(Ω) (𝛾, 𝐷) =

©«
𝑤 := uniform(J𝑒1K(𝛾), J𝑒2K(𝛾)) (J𝑒𝑜 K(𝛾))
score(𝑤);
ret(Ω, id,★)

ª®®¬
LJobs(𝑒𝑜 , poisson 𝑒1)K(Ω) (𝛾, 𝐷) =

©«
𝑤 := poisson(J𝑒1K(𝛾)) (J𝑒𝑜 K(𝛾))
score(𝑤);
ret(Ω, id,★)

ª®®¬
LJL𝑀 M𝑆 K(Ω) (𝛾, 𝐷) =

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω) (𝛾, 𝐷)
𝑥 ←

(
𝜔 ′ ← 𝜇′ |𝐸′ ; ret(𝑋 (𝜔 ′))

)
ret((Ω′, 𝜇′, 𝐸′ ∩ 𝑋 −1 (𝑥)), 𝑓 , 𝑥)

ª®®¬
A.7 Soundness

Definition A.12. Two computations 𝜇, 𝜈 : Distw𝐴 are equal as importance samplers, written 𝜇 ≃ 𝜈 ,
if for all bounded integrable 𝑘 : 𝐴→ R it holds that E(𝑎,𝑥 )∼𝜇 [𝑎 · 𝑘 (𝑥)] = E(𝑏,𝑦)∼𝜇 [𝑏 · 𝑘 (𝑦)].

Lemma A.13. The equivalence relation ≃ is a congruence for the monad Distw: if 𝜇 ≃ 𝜈 : Distw𝐴
and 𝑓 , 𝑔 : 𝐴→ Distw𝐵 with 𝑓 (𝑥) ≃ 𝑔(𝑥) for all 𝑥 in 𝐴 then (𝑥 ← 𝜇; 𝑓 (𝑥)) ≃ (𝑥 ← 𝜈 ;𝑔(𝑥)).

36



Multi-Language Probabilistic Programming OOPSLA ’25, October 12–18, 2025, Singapore

Proof. If 𝑘 : 𝐵 → R bounded integrable then

E
(𝑐,𝑦)∼(𝑥←𝜇;𝑓 (𝑥 ) )

[𝑐𝑘 (𝑦)] = E
(𝑎,𝑥 )∼𝜇

[
E

(𝑏,𝑦)∼𝑓 (𝑥 )
[𝑎 · 𝑏 · 𝑘 (𝑦)]

]
(1)
= E
(𝑎,𝑥 )∼𝜇

[
E

(𝑏,𝑦)∼𝑔 (𝑥 )
[𝑎 · 𝑏 · 𝑘 (𝑦)]

]
(2)
= E
(𝑎,𝑥 )∼𝜈

[
E

(𝑏,𝑦)∼𝑔 (𝑥 )
[𝑎 · 𝑏 · 𝑘 (𝑦)]

]
= E
(𝑐,𝑦)∼(𝑥←𝜈 ;𝑔 (𝑥 ) )

[𝑐𝑘 (𝑦)]

where (1) follows from 𝑓 (𝑥) ≃ 𝑔(𝑥) and (2) from 𝜇 ≃ 𝜈 , using linearity of expectation throughout
as needed. □

Lemma A.14. If (Ω, 𝜇, 𝐸) ∈ FCPS and 𝐹 ⊆ Ω then 𝜇 |𝐸 |𝐹 = 𝜇 |𝐸∩𝐹 .
Proof. If 𝜇 (𝐸∩𝐹 ) = 0 then both sides are the zeromeasure. Otherwise for all𝐺 have (𝜇 |𝐸 |𝐹 ) (𝐺) =

𝜇 |𝐸 (𝐹 ∩𝐺)/𝜇 |𝐸 (𝐹 ) = 𝜇 (𝐸 ∩ 𝐹 ∩𝐺)/𝜇 (𝐸 ∩ 𝐹 ) = 𝜇 |𝐸∩𝐹 (𝐺). □

Lemma A.15. If (Ω, 𝜇, 𝐸) ∈ FCPS then
©«
score(𝜇 (𝐸));
𝜔 ← 𝜇 |𝐸 ;
ret 𝜔

ª®®¬ ≃
©«
𝜔 ← 𝜇;
score(1𝜔∈𝐸);
ret 𝜔

ª®®¬.
Proof. For all 𝑘 : Ω → R have

E
(𝑎,𝜔 )∼LHS

[𝑘 (𝜔)] = E
𝜔∼𝜇 |𝐸

[𝜇 (𝐸)𝑘 (𝜔)] =
∑︁
𝜔∈Ω

𝜇 |𝐸 (𝜔)𝜇 (𝐸)𝑘 (𝜔) =
∑︁
𝜔∈Ω

𝜇 (𝜔 ∩ 𝐸)𝑘 (𝜔)

=
∑︁
𝜔∈Ω

1𝜔∈𝐸𝜇 (𝜔)𝑘 (𝜔) = E
(𝑎,𝜔 )∼RHS

[𝑎 · 𝑘 (𝜔)] .

□

Lemma A.16. If (Ω, 𝜇, 𝐸) ∈ FCPS and 𝑋 : Ω → 𝐴 with 𝐴 finite then

©«
𝑥 ←

(
𝜔 ← 𝜇; ret(𝑋𝜔)

)
;

𝜔 ′ ← 𝜇 |𝑋 −1 (𝑥 ) ;
ret(𝑥,𝜔)

ª®®¬ =

(
𝜔 ′ ← 𝜇;
ret(𝑋𝜔 ′, 𝜔 ′)

)
.

Proof. All distributions involved are discrete, so it suffices to show LHS and RHS give the same
probability to pairs (𝑎, 𝑏).

LHS(𝑎, 𝑏) =
∑︁
𝜔∈Ω

𝜇 (𝜔)
∑︁
𝜔∈Ω

𝜇 |𝑋 −1 (𝑋𝜔 ) (𝜔 ′)1(𝑋𝜔,𝜔 ′ )=(𝑎,𝑏 ) =
∑︁

𝜔∈Ω,𝜔 ′∈Ω,𝑋𝜔=𝑎,𝜔 ′=𝑏

𝜇 (𝜔)𝜇 |𝑋 −1 (𝑋𝜔 ) (𝜔 ′)

=
∑︁

𝜔∈Ω,𝑋𝜔=𝑎

𝜇 (𝜔)𝜇 |𝑋 −1 (𝑎) (𝑏) = 𝜇 |𝑋 −1 (𝑎) (𝑏)𝜇 (𝑋 −1 (𝑎)) = 𝜇 (𝑋 −1 (𝑎) ∩ 𝑏) = RHS(𝑎, 𝑏)

□

Theorem A.17. The following hold:
(1) If Γ;Δ ⊢c 𝑀 : 𝐴 then the following holds for all Ω, 𝜇, 𝐸,𝛾, 𝐷 :

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬ ≃
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(2) If Γ;Δ ⊢c 𝑒 : 𝜏 then the following holds for all Ω, 𝜇, 𝐸,𝛾, 𝐷 :

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔)), 𝑥)

ª®®¬ ≃
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
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Proof. By induction on the typing rules.
(1)
(Γ;Δ ⊢c ret𝑀 : 𝐴)

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJret𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬
=

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← ret((Ω, 𝜇, 𝐸), id, J𝑀 K ◦ 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬
=

(
𝜔 ← 𝜇 |𝐸 ;
ret(𝐷𝜔, J𝑀 K(𝐷𝜔))

)
=

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJret𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c let 𝑋 be𝑀 in 𝑁 : 𝐵) In this case we work backwards, rearranging RHS into LHS:

©«
𝜔 ← 𝜇 |𝐸 ;
𝑦 ←HJlet 𝑋 be𝑀 in 𝑁 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔,𝑦)

ª®®¬ =

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑀 K(𝛾, 𝐷𝜔);
𝑦 ←HJ𝑁 K(𝛾, 𝐷𝜔 [𝑋 ↦→ 𝑥]);
ret(𝐷𝜔,𝑦)

ª®®®®¬
=

©«

(𝛿, 𝑥) ←
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

𝑦 ←HJ𝑁 K(𝛾, 𝛿 [𝑋 ↦→ 𝑥]);
ret(𝐷𝜔,𝑦)

ª®®®®®®®®®®¬
IH≃

©«

(𝛿, 𝑥) ←
((Ω1, 𝜇1, 𝐸1), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔1 ← 𝜇1 |𝐸1 ;
ret(𝐷 (𝑓 (𝜔1)), 𝑋𝜔1)

𝑦 ←HJ𝑁 K(𝛾, 𝛿 [𝑋 ↦→ 𝑥]);
ret(𝐷𝜔,𝑦)

ª®®®®®®®®®®¬
=

©«
((Ω1, 𝜇1, 𝐸1), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔1 ← 𝜇1 |𝐸1 ;
𝑦 ←HJ𝑁 K(𝛾, ((𝐷 ◦ 𝑓1) [𝑋 ↦→ 𝑋 ]) (𝜔1));
ret(𝐷𝜔,𝑦)

ª®®®®¬
IH≃

©«
((Ω1, 𝜇1, 𝐸1), 𝑓1, 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
((Ω2, 𝜇2, 𝐸2), 𝑓2, 𝑌 ) ← LJ𝑁 K(Ω1, 𝜇1, 𝐸1) (𝛾, (𝐷 ◦ 𝑓1) [𝑋 ↦→ 𝑋 ]);
𝜔2 ← 𝜇2 |𝐸2 ;
ret(𝐷 (𝑓1 (𝑓2 (𝜔))), 𝑌𝜔2)

ª®®®®¬
=

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑍 ) ← LJlet 𝑋 be𝑀 in 𝑁 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔)), 𝑍𝜔 ′)

ª®®¬
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(Γ;Δ ⊢c if 𝑒 then𝑀 else 𝑁 : 𝐴)

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJif 𝑒 then𝑀 else 𝑁 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬

=

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ←
if J𝑒K(𝛾)
then LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
else LJ𝑁 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);

𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®®®®®®®®®¬
=

©«

if J𝑒K(𝛾) then
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

else
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑁 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®®®®®®®®®®®®®®¬

IH×2≃

©«

if J𝑒K(𝛾) then
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

else
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑁 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®®®®®®®®®®®®®®¬

=

©«

𝜔 ← 𝜇 |𝐸 ;
𝑥 ←

if J𝑒K(𝛾)
thenHJ𝑀 K(𝛾, 𝐷𝜔)
elseHJ𝑁 K(𝛾, 𝐷𝜔)

ret(𝐷𝜔, 𝑥)

ª®®®®®®®®®®¬
=

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJif 𝑒 then𝑀 else 𝑁 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c flip 𝑒 : bool) Let 𝑝 = (if J𝑒K(𝛾) ∈ [0, 1] then J𝑒K(𝛾) else 0).

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJflip 𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬ =

((𝜔,𝑏) ← (𝜇 ⊗ flip(𝑝)) |𝐸×JboolK;
ret(𝐷𝜔,𝑏)

)

=
©«
𝜔 ← 𝜇 |𝐸 ;
𝑏 ← flip(𝑝);
ret(𝐷𝜔,𝑏)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJflip 𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
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(Γ;Δ ⊢c observe𝑀 : unit) Let 𝐹 be the subset (J𝑀 K (Ω, 𝜇, 𝐸) ◦ 𝐷)−1 (⊤) of Ω.

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJobserve𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬ =
©«
score(𝜇 |𝐸 (𝐹 ));
𝜔 ← 𝜇 |𝐸∩𝐹 ;
ret(𝐷𝜔,★)

ª®®¬
Lemma A.14

=
©«
score(𝜇 |𝐸 (𝐹 ));
𝜔 ← 𝜇 |𝐸 |𝐹 ;
ret(𝐷𝜔,★)

ª®®¬
Lemma A.15≃

©«
𝜔 ← 𝜇 |𝐸 ;
score(1𝜔∈𝐹 );
ret(𝐷𝜔,★)

ª®®¬
=

©«
𝜔 ← 𝜇 |𝐸 ;
score(1J𝑀 K(𝐷𝜔 )=⊤);
ret(𝐷𝜔,★)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJobserve𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c L 𝑒 M𝐸 : 𝐴)

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJL 𝑒 M𝐸 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬
=

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ←(
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
ret((Ω′, 𝜇′, 𝐸′), 𝑓 , _ ↦→ 𝑥)

)
;

𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®®®®®®®¬
=

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®¬
IH≃

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJL 𝑒 M𝐸 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(2)
(Γ;Δ ⊢c ret 𝑒 : 𝜏) ©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJret 𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔)), 𝑥)

ª®®¬
=

(
𝜔 ← 𝜇 |𝐸 ;
ret(𝐷𝜔, J𝑒K(𝛾))

)
=

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJret 𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
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(Γ;Δ ⊢c let 𝑥 be 𝑒1 in 𝑒2 : 𝜏) In this case we work backwards, rearranging RHS into LHS:

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJlet 𝑥 be 𝑒1 in 𝑒2K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬ =

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒1K(𝛾, 𝐷𝜔);
𝑦 ←HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥], 𝐷𝜔);
ret(𝐷𝜔,𝑦)

ª®®®®¬
=

©«

(𝛿, 𝑥) ←

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒1K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬ ;
𝑦 ←HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥], 𝛿);
ret(𝛿,𝑦)

ª®®®®®®®®®®¬
IH≃

©«

(𝛿, 𝑥) ←

©«
((Ω1, 𝜇1, 𝐸1), 𝑓1, 𝑥) ← LJ𝑒1K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔1 ← 𝜇1 |𝐸1 ;
ret(𝐷 (𝑓1 (𝜔1)), 𝑋𝜔1)

ª®®¬ ;
𝑦 ←HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥], 𝛿);
ret(𝛿,𝑦)

ª®®®®®®®®®®¬
=

©«

((Ω1, 𝜇1, 𝐸1), 𝑓1, 𝑥) ← LJ𝑒1K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔1 ← 𝜇1 |𝐸1 ;
𝛿 := 𝐷 (𝑓1 (𝜔1));
𝑦 ←HJ𝑒2K(𝛾 [𝑥 ↦→ 𝑥], 𝛿);
ret(𝛿,𝑦)

ª®®®®®®®¬
IH≃

©«
((Ω1, 𝜇1, 𝐸1), 𝑓1, 𝑥) ← LJ𝑒1K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
((Ω2, 𝜇2, 𝐸2), 𝑓2, 𝑦) ← LJ𝑒2K(Ω1, 𝜇1, 𝐸1) (𝛾 [𝑥 ↦→ 𝑥], 𝐷 ◦ 𝑓1);
𝜔2 ← 𝜇2 |𝐸2 ;
ret(𝐷 (𝑓1 (𝑓2 (𝜔2))), 𝑦)

ª®®®®¬
=

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑧) ← LJlet 𝑥 be 𝑒1 in 𝑒2K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑧)

ª®®¬
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(Γ;Δ ⊢c if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏)©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJif 𝑒1 then 𝑒2 else 𝑒3K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®¬

=

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ←
if J𝑒1K(𝛾)
then LJ𝑒2K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
else LJ𝑒3K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);

𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®®®®®®®®®¬
=

©«

if J𝑒1K(𝛾) then
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒2K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

else
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒3K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®®®®®®®®®®®®®®¬

IH×2≃

©«

if J𝑒1K(𝛾) then
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒2K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

else
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒3K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®®®®®®®®®®®®®®¬

=

©«

𝜔 ← 𝜇 |𝐸 ;
𝑥 ←

if J𝑒1K(𝛾)
thenHJ𝑒2K(𝛾, 𝐷𝜔)
elseHJ𝑒3K(𝛾, 𝐷𝜔)

ret(𝐷𝜔, 𝑥)

ª®®®®®®®®®®¬
=

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJif 𝑒1 then 𝑒2 else 𝑒3K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c 𝑒 : 𝜏 for 𝑒 = flip 𝑒1 or 𝑒 = uniform 𝑒1 𝑒2 or 𝑒 = poisson 𝑒1)
If 𝑒 = flip 𝑒1 for some 𝑒1, then let 𝜈 be the distribution flip(J𝑒1K(𝛾)).
If 𝑒 = uniform 𝑒1 𝑒2 then let 𝜈 be the distribution uniform(J𝑒1K(𝛾), J𝑒1K(𝛾)).
If 𝑒 = poisson 𝑒1 for some 𝑒1, then let 𝜈 be the distribution poisson(J𝑒1K(𝛾)).
In all cases,

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJ𝑒K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®¬ =

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ←(
𝑥 ← 𝜈 ;
ret((Ω, 𝜇, 𝐸), id, 𝑥)

)
;

𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®®®®®®¬
=

©«
𝑥 ← 𝜈 ;
𝜔 ← 𝜇 |𝐸 ;
ret(𝐷𝜔, 𝑥)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c obs(𝑒𝑜 , 𝑒) : unit for 𝑒 = flip 𝑒1 or 𝑒 = uniform 𝑒1 𝑒2 or 𝑒 = poisson 𝑒1)
If 𝑒 = flip 𝑒1 for some 𝑒1, then let 𝜈 be the distribution flip(J𝑒1K(𝛾)).
If 𝑒 = uniform 𝑒1 𝑒2 then let 𝜈 be the distribution uniform(J𝑒1K(𝛾), J𝑒1K(𝛾)).
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If 𝑒 = poisson 𝑒1 for some 𝑒1, then let 𝜈 be the distribution poisson(J𝑒1K(𝛾)).
In all cases,©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJobs(𝑒𝑜 , 𝑒)K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®¬ =
©«
score(𝜈 (J𝑒𝑜 K(𝛾)));
𝜔 ← 𝜇 |𝐸 ;
ret(𝐷𝜔,★)

ª®®¬
Cont’s score does not effect the FCPS and we commute with 𝜇 |𝐸 ,

comm
=

©«
𝜔 ← 𝜇 |𝐸 ;
score(𝜈 (J𝑒𝑜 K(𝛾)));
ret(𝐷𝜔,★)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑒K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
(Γ;Δ ⊢c L𝑀 M𝑆 : 𝜏)

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ← LJL𝑀 M𝑆 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷);
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®¬
=

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑥) ←

©«
((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷)
𝑥 ←

(
𝜔 ′ ← 𝜇′ |𝐸′ ; ret(𝑋𝜔 ′)

)
ret((Ω′, 𝜇′, 𝐸′ ∩ 𝑋 −1 (𝑥)), 𝑥)

ª®®¬
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®®®®®®®®®¬
=

©«

((Ω′, 𝜇′, 𝐸′), 𝑓 , 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷)
𝑥 ←

(
𝜔 ′ ← 𝜇′ |𝐸′ ; ret(𝑋𝜔 ′)

)
𝐸′′ := 𝐸′ ∩ 𝑋 −1 (𝑥);
𝜔 ′ ← 𝜇′ |𝐸′′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑥)

ª®®®®®®®¬
Lemmas A.14 and A.16

=
©«
((Ω′, 𝜇′, 𝐸′), 𝑋 ) ← LJ𝑀 K(Ω, 𝜇, 𝐸) (𝛾, 𝐷)
𝜔 ′ ← 𝜇′ |𝐸′ ;
ret(𝐷 (𝑓 (𝜔 ′)), 𝑋𝜔 ′)

ª®®¬
IH≃

©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJ𝑀 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬ =
©«
𝜔 ← 𝜇 |𝐸 ;
𝑥 ←HJL𝑀 M𝑆 K(𝛾, 𝐷𝜔);
ret(𝐷𝜔, 𝑥)

ª®®¬
□

Definition A.18. For a closed program ···; ··· ⊢c 𝑒 : 𝜏 , let evalL (𝑒) be the computation((_, _, 𝑥) ← LJ𝑒K(emp) (∅, ∅);
ret 𝑥

)
: DistwJ𝜏 K

where ∅ denotes the empty substitution. Let evalH (𝑒) be the computationHJ𝑒K(∅, ∅) : DistwJ𝜏 K.

Theorem A.19 (Cont soundness). If ·; · ⊢c 𝑒 : 𝜏 then evalL (𝑒) ≃ evalH (𝑒).
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Proof. Apply Theorem A.17. □

A.8 Evaluation details

In this section, we include three example programs from our evaluation to showcase the syntax
of our implementation. These include the 15-node arrival model with tree-topology, the 9-node
reachability model with grid topology.

We additionally provide our evaluations, inclusive of standard error over the 100 runs.

Listing 3. Reachability-9

1 exact {
2 let x00 = flip 1.0 / 3.0 in
3 let x01 = if x00 then flip 1.0 / 4.0 else flip 1.0 / 5.0 in
4 let x10 = if x00 then flip 1.0 / 4.0 else flip 1.0 / 5.0 in
5 let diag = sample {
6 x02 ~ if x01 then bern (1.0 / 4.0) else bern (1.0 / 5.0);
7 x20 ~ if x10 then bern (1.0 / 4.0) else bern (1.0 / 5.0);
8 x11 ~ if x10 && x01 then bern (1.0 / 6.0)
9 else if x10 && !x01 then bern (1.0 / 7.0)
10 else if !x10 && x01 then bern (1.0 / 8.0)
11 else bern (1.0 / 9.0);
12 (x20 , x11 , x02)
13 } in
14 let x20 = diag [0] in
15 let x11 = diag [1] in
16 let x02 = diag [2] in
17

18 let x12 = if x11 && x02 then flip 1.0 / 6.0
19 else if x11 && !x02 then flip 1.0 / 7.0
20 else if !x11 && x02 then flip 1.0 / 8.0
21 else flip 1.0 / 9.0 in
22 let x21 = if x20 && x11 then flip 1.0 / 6.0
23 else if x20 && !x11 then flip 1.0 / 7.0
24 else if !x20 && x11 then flip 1.0 / 8.0
25 else flip 1.0 / 9.0 in
26 let x22 = if x21 && x12 then flip 1.0 / 6.0
27 else if x21 && !x12 then flip 1.0 / 7.0
28 else if !x21 && x12 then flip 1.0 / 8.0
29 else flip 1.0 / 9.0 in
30 observe x22 in
31 ( x00 , x01 , x02
32 , x10 , x11 , x12
33 , x20 , x21 , x22
34 )
35 }

Fig. 16. The network reachability program for the 9-node grid topology
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Listing 4. Arrival-15

1 exact fn network () -> Bool {
2 let n30r = true in
3 let n20r = if n30r then flip 1.0 / 2.0 else false in
4 let n31r = if !n20r then flip 1.0 / 2.0 else false in
5

6 let n10r = if n20r then flip 1.0 / 2.0 else false in
7 let n21r = if !n10r then flip 1.0 / 2.0 else false in
8 let n32r = if n21r then flip 1.0 / 2.0 else false in
9 let n33r = if !n21r then flip 1.0 / 2.0 else false in
10

11 let n0 = n10r in
12

13 let n10l = if n0 then flip 1.0 / 2.0 else false in
14

15 let n20l = if n10l then flip 1.0 / 2.0 else false in
16 let n21l = if !n10l then flip 1.0 / 2.0 else false in
17

18 let n30l = if n20l then flip 1.0 / 2.0 else false in
19 let n31l = if !n20l then flip 1.0 / 2.0 else false in
20 let n32l = if n21l then flip 1.0 / 2.0 else false in
21 let n33l = if !n21l then flip 1.0 / 2.0 else false in
22 observe n32l in
23 n0
24 }
25

26 sample {
27 ix ~ poisson (3.0);
28 npackets <- 0;
29 while ix > 0 {
30 traverses <- exact(network ());
31 npackets <- if traverses { npackets + 1 } else { npackets };
32 ix <- ix - 1;
33 true
34 };
35 npackets
36 }

Fig. 17. The network reachability program for the 9-node grid topology
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Listing 5. Gossip-4

1 sample fn forward(ix : Int) -> Int {
2 s ~ discrete (1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0);
3 if s < ix { s } else { s + 1 }
4 }
5

6 exact fn node(nid : Int) -> (Int , Int) {
7 let p1 = sample(forward(nid)) in
8 let p2 = sample(forward(nid)) in
9 (p1 , p2)
10 }
11

12 exact fn network_step(
13 n0 : Bool , n1 : Bool , n2: Bool , n3 : Bool , next : Int
14 ) -> (Bool , Bool , Bool , Bool , Int , Int) {
15 let n0 = n0 || (next == 0) in
16 let n1 = n1 || (next == 1) in
17 let n2 = n2 || (next == 2) in
18 let n3 = n3 || (next == 3) in
19 let fwd = node(next) in
20 (n0 , n1 , n2 , n3, fwd[0], fwd [1])
21 }
22

23 sample fn as_num(b : Bool) -> Float {
24 if (b) { 1.0 } else { 0.0 }
25 }
26

27 sample {
28 p <- exact(node (0));
29 p1 <- p[0]; p2 <- p[1];
30 i0 <- true; i1 <- false; i2 <- false; i3 <- false;
31 q <- []; q <- push(q, p1); q <- push(q, p2);
32 num_steps ~ discrete (0.25 ,0.25 ,0.25 ,0.25);
33 num_steps <- num_steps + 4;
34 while (num_steps > 0) {
35 nxt <- head(q);
36 q <- tail(q);
37 state <- exact(network_step(i0, i1, i2, i3, nxt));
38 i0 <- state [0]; i1 <- state [1]; i2 <- state [2]; i3 <- state [3];
39 q <- push(q, state [4]);
40 q <- push(q, state [5]);
41 num_steps <- num_steps - 1;
42 true
43 };
44 n0 <- as_num(i0);
45 n1 <- as_num(i1);
46 n2 <- as_num(i2);
47 n3 <- as_num(i3);
48 (n0 + n1 + n2 + n3)
49 }

Fig. 18. The network reachability program for the 9-node grid topology
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B COMPARISONWITH NESTED INFERENCE

It is interesting to contemplate the relationship between the nested inference approach andMul-
tiPPL. A crisp comparison — for instance, a formal expressivity result establishing that it is not
possible to represent our multi-language interoperation using nested inference — is difficult, due to
(1) the large variety of different approaches to nested inference, and (2) the fact that such expressivity
results are very hard even for very restricted languages, let alone rich general-purpose probabilistic
programming languages. It would be very interesting to investigate the relative expressivity of
multi-language interoperation and nested inference, but such an investigation is beyond the scope
of this paper.

At the very least, what we can say is thatMultiPPL’s low-level denotational semantics, and hence
also its inference strategy, is markedly different from the standard measure-theoretic semantics
of nested inference, such as Staton [54]’s model of nested queries. In Staton [54], probabilistic
computations denote measure-theoretic kernels. The computation normalize(𝑡) represents a nested
query: its takes in a probabilistic computation 𝑡 of type𝐴 and produces a deterministic computation
that can yield one of three possible outcomes:
(1) a tuple (1, (𝑒, 𝑑)) consisting of a normalizing constant 𝑒 and a distribution 𝑑 over elements of

type 𝐴,
(2) a tuple (2, ()) signalling that the normalizing constant was zero,
(3) or a tuple (3, ()) signalling that the normalizing constant was infinity.

Soundness of nested inference is then justified by the following equational reasoning principle,
reproduced here from Staton [54]:

J𝑡 K =

u

w
v

case normalize(𝑡) of (1, (𝑒, 𝑑)) ⇒ score(𝑒); sample(𝑑)
| (2, ()) ⇒ score(0); 𝑡
| (3, ()) ⇒ 𝑡

}

�
~ (7)

Disregarding the edge cases where the normalizing constant is zero or infinity, Eq. (7) says that
running a probabilistic computation 𝑡 is the same as (1) computing a representation of the distri-
bution of 𝑡 , either by exact inference or by “freezing a simulation” and examining “a histogram
that has been built” in the words of Staton [54], and then (2) resampling from this distribution and
scoring by the normalizing constant.
There are a number of points that prevent this model of nested inference from being applied

directly to justify correctness of MultiPPL, which may help to clarify the difference between
nested inference and MultiPPL’s inference interoperation:
• It is about a kernel-based model where programs take deterministic values as input, but
MultiPPL’s Disc programs take random variables as input. This is an important difference:
because Disc programs take random variables as input, a Disc program that simply makes
use of a free variable in context produces a random variable, not a fixed deterministic value.
In contrast, such a program always denotes a deterministic point mass under a kernel-based
semantics.
• MultiPPL’s semantics of Disc programs is stateful, and this is necessary to model how exact
inference works in our implementation. Contrastingly, the kernel-based model of Staton [54]
is not stateful in this way, and so would not have been sufficient for establishing our main
soundness theorem.
• Because the model of Staton [54] is not stateful, it can’t account for the stateful updates to
the probability space thatMultiPPL performs in order to ensure sample consistency.
• Finally, Eq. (7) suggests to use importance reweighting via score to ensure sound nesting of
exact inference within an approximate-inference context, by properly taking the normalizing
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constant produced by the nested query into account. This is quite different from howMul-
tiPPL’s L− M𝑆 boundary form handles the nesting of Disc subterms in Cont contexts — as
shown in Fig. 10, the low-level semantics of L− M𝑆 does not perform importance reweighting.
Instead, importance reweighting occurs in the semantics of Disc-observe statements. Thus
Eq. (7) does not explain MultiPPL’s importance reweighting scheme.

Together, these points show that multi-language inference is distinct enough from nested inference
that the standardmeasure-theoretic model of nested queries from Staton [54] cannot be used directly
to justify key aspects of MultiPPL’s inference strategy, such as the need for sample consistency and
when importance reweighting is performed. Though Staton [54] is just one approach to modelling
nested inference, it being a relatively well-established approach suggests that there are indeed
fundamental differences between nested inference and MultiPPL’s multilanguage inference.
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