
Towards Symbolic Execution for Probability and
Non-determinism

Jack Czenszak∗
Northeastern University
Boston, MA, United States

John M. Li∗
Northeastern University
Boston, MA, United States

Steven Holtzen
Northeastern University
Boston, MA, United States

Knowledge compilation is emerging as an effective tool for
scaling exact inference to complex probabilistic programs [5,
15, 18]. The essence of knowledge compilation is to encode
a probabilistic program as a compact data structure, such as
a binary decision diagram. This inference strategy strongly
resembles symbolic execution. In parallel work, we have used
this observation to repurpose the symbolic executor Rosette
[21, 22] to perform probabilistic inference. Here, we aim to
develop the mathematical foundation for this adaptation of
Rosette and expand its applications beyond probability and
non-determinism.

The key insight is that both probabilistic choice and non-
deterministic choice are (commutative) affine effects. We
show that every affine effect gives rise to a denotational se-
mantics for symbolic execution. This semantics is inspired
by models of name generation [8, 16, 19, 20] and the sheaf-
theoretic approach to the Giry monad [17]. Our semantics
is based on a category of worlds containing symbolic heaps.
Types then denote world-dependent sets, and programs de-
note world-dependent functions. We show that this seman-
tics is sound and complete in the sense of Torlak and Bodik
[22]: it captures all and only those outcomes that are reach-
able by computation using the original affine effect (Theo-
rem 0.1).

Affine Effects. Probability and non-determinism, without
observation and failure, are both affine effects [4]. Program-
matically, this means that (i) two monadic let-bindings may
be exchanged if doing so does not create a free variable
and (ii) a monadic let-binding may be dropped if its bound
variable is not referenced. Figure 1 depicts these rules for a
monadic PPL with coin flips. We say that a monad is affine
if it validates these two equations.1

Noticably, this purelymonadic formulation of affine effects
is presentation-invariant. For example, non-determinism is
typically presented by a single primitive operation amb :
1→ P# (B) [10], but the usual model of non-determinism—
the non-empty, finite power set monad P# [11]—does not
distinguish amb from other maps 1→ P# (B). In symbolic
execution, the presentation of an effect in terms of primitive
operations is crucial: a symbolic executor represents the
results of primitive operations as symbolic variables.

In order to work with a particular presentation of an affine
effect, we import the theory of algebraic effects [12, 13].

∗Both authors contributed equally to this research.
1In Kaddar and Staton [6, Definition 2.3], this is called the dataflow property.

©«
𝑥 ← flip 1/7;

𝑦 ← flip 1/4;
ret (𝑥, 𝑦)

ª®®®¬ ≡
©«
𝑦 ← flip 1/4;

𝑥 ← flip 1/7;
ret (𝑥, 𝑦)

ª®®®¬
(
𝑥 ← flip 1/3;
ret 3

)
≡ (ret 3)

Figure 1. Examples of commutative (left) and affine (right)
equational laws for a monadic PPL with coin flips.

flip 1/7

flip 1/4 flip 1/4

(⊤,⊤) (⊤,⊥) (⊥,⊤) (⊥,⊥)

=E

flip 1/4

flip 1/7 flip 1/7

(⊤,⊤) (⊤,⊥) (⊥,⊤) (⊥,⊥)

flip 1/3

3 3

=E 3

Figure 2. Examples of commutative (top) and affine (bottom)
equational laws from Figure 1, as algebraic syntax trees. Each
left subtree corresponds to the “true” branch of computation.

Following Bauer [2], we say an algebraic theory T = (Σ, E)
consists of a signature Σ = {(op𝑖 , 𝐴𝑖)}𝑖∈I and equations E.
Each operation symbol op𝑖 in Σ has arity 𝐴𝑖 . Informally, an
arity is the set of possible outcomes for a particular operation
symbol. For instance, the operation symbols amb and flip 𝑝—
where 𝑝 is a rational number between 0 and 1—both have
arity B.
Every theory T freely generates a monad T on the cate-

gory of sets [2, 3, 9]. We briefly recall the construction of this
monad. Given Σ and a set 𝑋 , define TreeΣ (𝑋) to be the set
of trees where (i) every leaf must be an element of 𝑋 , and (ii)
every node is an 𝐴𝑖 -ary operation symbol op𝑖 in Σ together
with |𝐴𝑖 |-many subtrees. The monad T maps a set 𝑋 to the
set TreeΣ (𝑋) quotiented by the equations in E. Tangibly,
T (𝑋) models computations that depend on the output of
effectful operations and produce a value in 𝑋 . We say T is
an affine algebraic theory if T models an affine effect.
In the monadic programming language induced by T ,

each operation symbol op in Σ with arity 𝐴 automatically
corresponds to a generic operation op : 1→ T (𝐴):

op() = [op(𝑎1, . . . , 𝑎𝑛)] 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴
That is, op() is the equivalence class containing the syntax
tree with one node op and a leaf for each 𝑎𝑖 ∈ 𝐴. Figure 2
reiterates the examples in Figure 1 using generic operations.

Jack Czenszak, John M. Li, and Steven Holtzen

Note the similarity between Figure 2 and probabilistic deci-
sion trees.
The function of a symbolic executor is to compute com-

pact representations of these decision trees. To do this, sym-
bolic executors require symbolic variables, which serve as ab-
stract representations of the outcomes of effectful operations.
As our work seeks to justify the probabilistic adaptation of
Rosette, we recount symbolic variables in the context of
symbolic unions.

Symbolic Unions. Rosette represents non-deterministic
values as symbolic unions, which are dynamically gener-
ated and merged throughout a program’s run time [14, 22].
When Rosette is restricted to Boolean non-determinism,
new symbolic unions are introduced using the operation
ŝym, the symbolic analogue of amb.

To evaluate ŝym, Rosette returns a fresh symbolic union

ŝym ⇓ [x : ⊤,¬x : ⊥]
for some fresh name x called a symbolic variable [22]. Intu-
itively, this symbolic union reads as “if the Boolean formula
x is true, then the symbolic union has value ⊤; if the for-
mula ¬x is true, the union has value ⊥.” As symbolic unions
are manipulated during a program, they may include an ar-
bitrary number of guarded concrete values, where guards
are disjoint Boolean formulae over all generated symbolic
variables [22].

In concurrent work, we have adapted this operational
semantics to probabilistic choice. The symbolic probabilistic
choice operation f̂lip 𝑝 can be evaluated similarly to ŝym,
but our operational semantics additionally requires a weight
map 𝜛 to track the probability that each symbolic variable
is true:

(f̂lip 𝑝,𝜛) ⇓ ([x : ⊤,¬x : ⊥], 𝜛 [x ↦→ 𝑝])
In this work, we seek a denotational account of this sym-

bolic execution strategy, that additionally generalizes to
other affine effects. What distinguishes symbolic execution
from the usual monadic semantics for an algebraic effect is
that every primitive operation is tagged with a unique symbolic
variable. It follows that every total Boolean assignment to the
symbolic variables created at run time uniquely determines
a concrete value of the program’s result.
Compared to amb whose effect is local, the behavior of

ŝym therefore depends on the global count of generated sym-
bolic variables. For example, if 𝑘 symbolic variables have
been created during a program, ŝym will generate a fresh
symbolic variable x𝑘+1 and return [x𝑘+1 : ⊤,¬x𝑘+1 : ⊥],
which is equivalently a function B𝑘+1 → B depending only
on the (𝑘 + 1)-th input.
Hence, the semantics of an arbitrary symbolic executor

must include global state that tags each symbolic operation
executed during run time. Moreover, a symbolic union over a
set 𝑋 must behave as a map whose domain is the product of
possible outcomes for all executed symbolic operations and

𝜔1 =

(
{x1, x2},

{
x1 ↦→ (flip 1/7,B),
x2 ↦→ (flip 1/4,B)

})
𝜔2 = ({x1}, {x1 ↦→ (flip 1/3,B) })

(a) Symbolic Heaps

L(B2) (𝜔1) = Set(B2,B2)

L(Z) (𝜔2) = Set (B,Z)

(b) Lifting

Figure 3. Examples of symbolic probability, following exam-
ples in Figure 2.

whose codomain is 𝑋 . This finally motivates our definition
of symbolic heaps.

Categorical Symbolic Execution. To store executed sym-
bolic operations, along with their unique tags, we introduce
the concept of a symbolic heap. This sets up a framework
for symbolically executing any affine algebraic theory.

Let T = (Σ, E) be an affine theory and denote the category
of symbolic heaps asW. Each object ofW is an Σ-valued
heap—that is, a pair (𝐿,ℎ) consisting of a finite set 𝐿 of names
(symbolic variables) and a function ℎ : 𝐿 → Σ mapping each
name to an operation symbol and arity.

We then lift a set 𝑋 to a set of symbolic unions L(𝑋) over
𝑋 as follows: for any heap (𝐿,ℎ), define L(𝑋) (𝐿,ℎ) to be the
set of functions

∏
{ℓ ↦→(op,𝐴) }∈ℎ 𝐴 → 𝑋 . Figure 3 illustrates

examples of lifting for symbolic probability.
Lifting defines a functor L : Set → [W, Set], where
[W, Set] is a functor category inhabited by categorical sym-
bolic unions. Interestingly, it can be shown that, for every
set 𝑋 , the lifting L(𝑋) is an atomic sheaf.

The symbolic execution monad T̂ on [W, Set] models ex-
tensions of the heap with new tagged operations, much like
in models of name generation [19]. Categorically, this monad
is a coend that quantifies over symbolic heaps. As in alge-
braic effects, each operation symbol op in Σ with arity 𝐴

yields a generic symbolic operation ôp : L(1) → T̂ (L(𝐴)),
which extends the heap with ℓ ↦→ (op, 𝐴) for a fresh name ℓ .

Now, a symbolic executor is correct if it exactly captures
the reachable branches of computation [22]. Our main theo-
rem captures this statement of correctness:

Theorem 0.1. For any affine algebraic theory T, there exists
a natural surjection 𝜒 : T̂ L → LT that commutes with
generic operations and the strong monad operations.

Conclusion. Our categorical semantics concisely justify
using symbolic execution to perform probabilistic inference.
Moreover, our correctness theorem suggests that symbolic
execution strategies may exist for other affine effects, such
as general semi-ring programming [1, 7].
However, this correctness theorem does not nearly cap-

ture the expressivity of Rosette. Most notably, our current
theorem does not include mutable state or recursion. The
primary focus of future work will be to enable more sophisti-
cated language features by generalizing our results from Set

Towards Symbolic Execution for Probability and Non-determinism

to other Cartesian-closed categories, including 𝜔Cpo and
Nom.

Another major focus will be the addition of both observa-
tion and failure. In particular, we will investigate generaliza-
tions in which the “maybe” monad transformer—and monad
transformers in general—are applied to T . Moreover, we will
continue to study symbolic liftings as atomic sheaves.

References
[1] Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter

Katoen, and Tobias Winkler. Weighted programming: a programming
paradigm for specifying mathematical models. Proceedings of the ACM
on Programming Languages, 6(OOPSLA1):1–30, 2022.

[2] Andrej Bauer. What is algebraic about algebraic effects and handlers?,
2019. URL https://arxiv.org/abs/1807.05923.

[3] Kwok-Ho Cheung. Distributive interaction of algebraic effects. PhD
thesis, University of Oxford, 2017.

[4] Tobias Fritz. A synthetic approach to markov kernels, conditional
independence and theorems on sufficient statistics. Advances in Math-
ematics, 370:107239, 2020.

[5] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling
exact inference for discrete probabilistic programs. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–31, November 2020.
ISSN 2475-1421. doi: 10.1145/3428208. URL http://dx.doi.org/10.1145/
3428208.

[6] Younesse Kaddar and Sam Staton. A model of stochastic memoization
and name generation in probabilistic programming: categorical seman-
tics via monads on presheaf categories. Electronic Notes in Theoretical
Informatics and Computer Science, 3, 2023.

[7] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An alge-
braic prolog for reasoning about possible worlds. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 25, pages 209–214,
2011.

[8] John M. Li, Jon Aytac, Philip Johnson-Freyd, Amal Ahmed, and Steven
Holtzen. A nominal approach to probabilistic separation logic. In Pro-
ceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’24, New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400706608. doi: 10.1145/3661814.3662135.
URL https://doi.org/10.1145/3661814.3662135.

[9] Fred EJ Linton. Some aspects of equational categories. In Proceedings
of the Conference on Categorical Algebra: La Jolla 1965, pages 84–94.
Springer, 1966.

[10] John McCarthy. A basis for a mathematical theory of computation. In
Studies in Logic and the Foundations of Mathematics, volume 26, pages
33–70. Elsevier, 1959.

[11] Eugenio Moggi. Notions of computation and monads. Information
and computation, 93(1):55–92, 1991.

[12] Gordon Plotkin and John Power. Semantics for algebraic operations.
Electronic Notes in Theoretical Computer Science, 45:332–345, 2001.

[13] Gordon Plotkin and John Power. Algebraic operations and generic
effects. Applied categorical structures, 11:69–94, 2003.

[14] Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak.
A formal foundation for symbolic evaluation with merging. Proc. ACM
Program. Lang., 6(POPL), January 2022. doi: 10.1145/3498709. URL
https://doi.org/10.1145/3498709.

[15] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. Sppl:
probabilistic programming with fast exact symbolic inference. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI ’21. ACM,
June 2021. doi: 10.1145/3453483.3454078. URL http://dx.doi.org/10.
1145/3453483.3454078.

[16] Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. Proba-
bilistic programming semantics for name generation. Proceedings of
the ACM on Programming Languages, 5(POPL):1–29, 2021.

[17] Alex Simpson. Probability sheaves and the giry monad. In 7th Con-
ference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2017.

[18] Steffen Smolka, Praveen Kumar, David M Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. Scalable verification of
probabilistic networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 190–203, 2019.

[19] Ian Stark. Names and Higher-Order Functions. PhD thesis, University
of Cambridge, December 1994. URL http://www.inf.ed.ac.uk/~stark/
namhof.html. Also available as Technical Report 363, University of
Cambridge Computer Laboratory.

[20] Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad
Kammar. Semantics for probabilistic programming: higher-order func-
tions, continuous distributions, and soft constraints. In Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS ’16. ACM, July 2016. doi: 10.1145/2933575.2935313. URL
http://dx.doi.org/10.1145/2933575.2935313.

[21] Emina Torlak and Rastislav Bodik. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM international sympo-
sium on New ideas, new paradigms, and reflections on programming &
software, pages 135–152, 2013.

[22] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual
machine for solver-aided host languages. ACM SIGPLAN Notices, 49
(6):530–541, 2014.

https://arxiv.org/abs/1807.05923
http://dx.doi.org/10.1145/3428208
http://dx.doi.org/10.1145/3428208
https://doi.org/10.1145/3661814.3662135
https://doi.org/10.1145/3498709
http://dx.doi.org/10.1145/3453483.3454078
http://dx.doi.org/10.1145/3453483.3454078
http://www.inf.ed.ac.uk/~stark/namhof.html
http://www.inf.ed.ac.uk/~stark/namhof.html
http://dx.doi.org/10.1145/2933575.2935313

	References

