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Background 
Symbolic executors use symbolic variables in order to 
compactly represent nondeterministic computations:

In concurrent work, we1 have adapted the symbolic 
executor Rosette to perform probabilistic inference:


This adaptation was hard to formally justify: though 
probabilistic Rosette's implementation reuses large 
parts of Rosette's code base, its correctness proof 
could not similarly reuse Rosette's correctness proof, 
and even required nontrivial extensions to existing 
models of Rosette. 
 

This work aims for a crisp mathematical justification 
for when/why Rosette can be repurposed in this way.

We present a model of symbolic execution encompassing both nondeterminism and probability. It 
yields a unified correctness proof for both (a fragment of) Rosette and its probabilistic adaptation, 
and generalizes beyond probability and nondeterminism to any effect that is affine commutative:

Let  be an affine commutative monad on  presented by an algebraic theory , giving 

concrete semantics to programs. We define a category  and a monad  on  that gives 

symbolic semantics. The category  is a variant of  and the monad  is a variant of Stark's 

name generation monad on :

T 𝖲𝖾𝗍 (Σ, 𝕋)
W ̂T [W; 𝖲𝖾𝗍]

W 𝖥𝗂𝗇𝖨𝗇𝗃 ̂T
[𝖥𝗂𝗇𝖨𝗇𝗃; 𝖲𝖾𝗍]

Key idea of the proof: every  can be brought into a normal form.t : TA

In future work, we plan to consider other affine commutative effects (e.g., weights) and substantiate 
our denotational model with a concrete programming language and implementation.

affine commutative 
equations

(The labels  and  correspond to variables allocated by the symbolic semantics .)ℓ1 ℓ2
̂T

Towards a unifying mathematical model 

Theorem 1. There exists a "lifting" functor  and a "concretization" map 

 that is surjective and commutes with operations of  and strong monad operations.

L : 𝖲𝖾𝗍 → [W; 𝖲𝖾𝗍]
χ : ̂TL → LT Σ

W = (𝖥𝗂𝗇𝖨𝗇𝗃 ↪ 𝖲𝖾𝗍) ↓ (𝖲𝖾𝗍 Σ 1) ̂TF(L, f : L → Σ) = ∫
(L′￼, f′￼:L′￼→Σ)

F(L + L′￼, [ f, f′￼])

Our main result says that generating fresh symbolic names using the symbolic monad  correctly 

simulates the concrete monad , and that every concrete computation is symbolically representable.

̂T
T
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