
Towards Symbolic Execution for Probability and Nondeterminism
Jack Czenszak, John M. Li, Steven Holtzen {czenszak.j,li.john,s.holtzen}@northeastern.edu

Background
Symbolic executors use symbolic variables in order to
compactly represent nondeterministic computations:

In concurrent work, we1 have adapted the symbolic
executor Rosette to perform probabilistic inference:

This adaptation was hard to formally justify: though
probabilistic Rosette's implementation reuses large
parts of Rosette's code base, its correctness proof
could not similarly reuse Rosette's correctness proof,
and even required nontrivial extensions to existing
models of Rosette. 

This work aims for a crisp mathematical justification
for when/why Rosette can be repurposed in this way.

We present a model of symbolic execution encompassing both nondeterminism and probability. It
yields a unified correctness proof for both (a fragment of) Rosette and its probabilistic adaptation,
and generalizes beyond probability and nondeterminism to any effect that is affine commutative:

Let be an affine commutative monad on presented by an algebraic theory , giving

concrete semantics to programs. We define a category and a monad on that gives

symbolic semantics. The category is a variant of and the monad is a variant of Stark's

name generation monad on :

T 𝖲𝖾𝗍 (Σ, 𝕋)
W ̂T [W; 𝖲𝖾𝗍]

W 𝖥𝗂𝗇𝖨𝗇𝗃 ̂T
[𝖥𝗂𝗇𝖨𝗇𝗃; 𝖲𝖾𝗍]

Key idea of the proof: every can be brought into a normal form.t : TA

In future work, we plan to consider other affine commutative effects (e.g., weights) and substantiate
our denotational model with a concrete programming language and implementation.

affine commutative
equations

(The labels and correspond to variables allocated by the symbolic semantics .)ℓ1 ℓ2
̂T

Towards a unifying mathematical model

Theorem 1. There exists a "lifting" functor and a "concretization" map

 that is surjective and commutes with operations of and strong monad operations.

L : 𝖲𝖾𝗍 → [W; 𝖲𝖾𝗍]
χ : ̂TL → LT Σ

W = (𝖥𝗂𝗇𝖨𝗇𝗃 ↪ 𝖲𝖾𝗍) ↓ (𝖲𝖾𝗍 Σ 1) ̂TF(L, f : L → Σ) = ∫
(L′￼, f′￼:L′￼→Σ)

F(L + L′￼, [f, f′￼])

Our main result says that generating fresh symbolic names using the symbolic monad correctly

simulates the concrete monad , and that every concrete computation is symbolically representable.

̂T
T

1 With Cameron Moy (moy.cam@northeastern.edu)

mailto:moy.cam@northeastern.edu

