
Towards a Categorical Model of the Lilac Separation Logic

Lilac [12] is a probabilistic separation logic [1] whose separating
conjunction denotes probabilistic independence. In contrast to or-
dinary separation logic, where propositions denote properties of
heaps and separating conjunction splits heaps into disjoint sub-
heaps, Lilac propositions denote properties of probability spaces and
separating conjunction splits probability spaces into independent
subspaces. Naively, one would expect this splitting of probability
spaces to be defined in terms of product spaces: perhaps a probabil-
ity space P splits into two spaces Q,R if P � Q ⊗ R. But this is
not so. Instead, Lilac’s separating conjunction is defined in terms of
independent combination, a partial binary operation on probability
spaces that plays the role disjoint union does for heaps in ordinary
separation logic. The definition of independent combination does
not mention product spaces at all; rather, independent combination
is constructed out of low-level measure-theoretic objects:

Definition 0.1 (Independent combination [12]). Let P = (Ω, F , 𝜇)
and Q = (Ω,G, 𝜈) be two probability spaces with common sample
space Ω. A space R = (Ω,H , 𝜌) is an independent combination of
P and Q if H is the smallest 𝜎-algebra containing F and G and
𝜌 (𝐹 ∩𝐺) = 𝜇 (𝐹 )𝜈 (𝐺) for all 𝐹 ∈ F ,𝐺 ∈ G. In this case we write
R = P • Q. Independent combinations are unique if they exist [12,
Lemma 2.3], so define a partial function on probability spaces with
common Ω.

The fact that this definition makes no mention of product spaces
is particularly surprising to those well-versed in probability theory.
The product space construction is natural and intuitive; it is the first
thing one reaches for when modelling probabilistic independence.
The lack of products in the definition of independent combination
raises a question: how do we know that independent combination
provides the right notion of separation for probabilistic separation
logic?

To answer this question, we first construct two categories: one
category equipped with a model of core Lilac where separation is
defined via independent combination, and one category equipped
with a model of core Lilac where separation is defined via prod-
uct. Our answer then comes in the form of a theorem: these two
categories are equivalent, and the notion of separation in one cat-
egory corresponds to the notion of separation in the other across
this equivalence, showing that independent combination and prod-
uct are two equivalent points of view on the same underlying
probability-theoretic concept.

The equivalence of these two category-theoretic models of Lilac
mathematizes an equivalence of two complementary perspectives
on the probability-theoretic notion of sample space:

Perspective 1: one global sample space. Under one perspective,
there is a single fixed sample space that serves as the global source
of all randomness. This is the approach taken in Lilac’s seman-
tic model. In Lilac, all probability-theoretic objects are defined in
terms of the space [0, 1]N of infinite streams of real numbers in
the interval [0, 1]: random variables are measurable functions out
of it, probability spaces are pairs (F , 𝜇) with F a sub-𝜎-algebra
of the Borel 𝜎-algebra on [0, 1]N and 𝜇 : F → [0, 1] a probability

FT 𝑋

T
F

𝑌

Figure 1: Constructing two independent coin flips in Lilac.

measure, and propositions denote sets of such pairs. This fixing of
a “one true sample space” is in line with recent work characterizing
equivalence of higher-order probabilistic programs [3, 35, 37], and
makes working with Lilac’s semantic model much easier: since
most theorems of probability theory are stated with respect to a
single ambient sample space, having just one sample space in Lilac’s
model makes it easy to import such theorems when extending Lilac
with new rules of inference.

As an example of this approach to modelling the sample space,
consider the task of modelling a pair of fair coin flips. Mathemati-
cally, this amounts to constructing two independent Boolean-valued
random variables 𝑋,𝑌 , with the event 𝑋 = T modelling the first
coin landing on heads and the event 𝑌 = T modelling the second
coin landing on heads. In Lilac, constructing these random variables
amounts to defining suitable functions𝑋,𝑌 : [0, 1]N → bool. There
are many equally-valid choices for 𝑋,𝑌 ; one such is depicted in
Figure 1. For ease of illustration, only the first two dimensions of the
sample space [0, 1]N are shown; 𝑋 is defined as the function that
sends an infinite stream (𝑣0, 𝑣1, . . . ) to the boolean value [𝑣0 < 0.5],
and 𝑌 as the function that sends an infinite stream (𝑣0, 𝑣1, . . . ) to
the boolean value [𝑣1 > 0.5]. The blue vertical rectangle is the
event 𝑋 = T and the orange vertical rectangle is the event 𝑋 = F.
Similarly, the dotted horizontal rectangle is the event 𝑌 = T and
the dashed horizontal rectangle is the event 𝑌 = F.

To state independence of 𝑋 and 𝑌 , it’s natural to consider all
events of the form [𝑋 = 𝑥] ∩ [𝑌 = 𝑦], or in other words all events
generated by the pullback 𝜎-algebras of 𝑋 and 𝑌 . This idea is cap-
tured by independent combination (Definition 0.1). Let be the
probability space whose 𝜎-algebra is generated by the partition
{ , } and whose measure is inherited from the Lebesgue mea-
sure on [0, 1]N. Let be the probability space generated by the
partition { , } in the same way. The independence of 𝑋 and 𝑌 is
expressed by the fact that the independent combination • is
defined. This holds because the areas of the regions in Figure 1 are
products of intersections of regions in and , as demanded by
Definition 0.1. Consider the events [𝑋 = T] = and [𝑌 = T] = .
Both of these events have area 1/2, and their intersection – the
upper-left quandrant of the unit square – has area 1/4 = (1/2) (1/2)
as needed; symmetric arguments show this holds for all quadrants.

Perspective 2: free choice of sample space. While the fixed-
sample-space approach is the one taken by Lilac, it is in fact very
different from the perspective that one might see in an introductory
course on probability theory. In this alternative perspective, the



Ω = bool

Ωnew = Ω ⊗ bool

𝜋1

Before extension

𝑋 : Ω → bool
𝑋 (𝜔) = 𝜔

Sample space Ω = bool

After extension

𝑋new, 𝑌 : Ωnew → bool
𝑋new = 𝑋 ◦ 𝜋1
𝑌 = 𝜋2
Sample space Ωnew = Ω ⊗ bool

Figure 2: Constructing two independent coin flips in pen-
and-paper probability.

sample space is malleable, and frequently changed to suit the needs
of the situation.

Let’s revisit the two-fair-coin example from this new perspective.
In contrast to the Lilac model, where the random variables 𝑋 and
𝑌 must be coded up in terms of functions on [0, 1]N, one is free to
choose a sample space that has just the randomness necessary. For
example, one could start by setting the sample space to Ω = bool
for modelling the first coin flip, giving each boolean value equal
probability to model the coin’s fairness, and defining the random
variable 𝑋 : Ω → bool to be the identity function. Then, to model
the addition of the second coin flip, one extends the sample space
Ω to a new sample space Ωnew, defined to be the product space
Ω ⊗ bool. The random variable 𝑌 : Ωnew → bool can then be
defined simply as the projection map 𝜋2. The projection map 𝜋1 :
Ω ⊗ bool → Ω mediates between Ω and Ωnew. Using it, random
variables defined with respect to the old sample space Ω can be
mechanically translated into random variables with respect toΩnew,
by precomposition. In particular, the random variable 𝑋 becomes
𝑋new = 𝑋 ◦ 𝜋1. Figure 2 contains an illustration of this setup.

This “dynamic” perspective on the sample space, in which it is
constantly changing to suit the needs of the situation, has many
conceptual advantages. The freedom to choose a minimal sample
space avoids the complexity that comes with having to encode
random variables in terms of arbitrary measurable subsets of some
ambient space like [0, 1]N. Important relationships between random
variables are often directly visible from the structure of the sample
space. For example, to state independence of 𝑋 and 𝑌 above from
this perspective requires far less measure-theoretic machinery: it
can be read off directly from the definitions of𝑋 and𝑌 as projections
out of an underlying product space bool ⊗ bool, whereas to recover
similar structure in Perspective 1 requires working with 𝜎-algebras
and proving the existence of independent combinations like • .

Unifying the two perspectives. These two complementary
perspectives on the sample space bear a striking resemblance to a
classic situation from the theory of names, which forms the basis for
traditional separation logic. There are two approaches to working
with objects that may contain names, such as free variables or
locations in the heap. Under one perspective, one fixes at the outset
a countable set to serve as a global name supply. This approach is

embodied by the category of nominal sets [7–9, 14, 21–25], which
are sets invariant under permutations of the name supply. Under
a second perspective, the set of names is malleable, and allowed
to grow over time. This approach is embodied by categories of
sheaves over a suitable category of renamings [6, 10, 11, 16, 18–
20, 26, 27, 34, 36]. A classic theorem of topos theory unifies the
two perspectives: the category of nominal sets is equivalent to a
suitable category of sheaves [13, Theorem III.9.2].

Our equivalence theorem is a probability-theoretic analogue of
this result. To model the fixed-sample-space perspective, we con-
struct a category of sets invariant under measurable automorphisms
of the interval [0, 1], in which separation is modelled by a set of
independent combinations. To model the extensible-sample-space
perspective, we construct a category of sheaves over a category of
measurable spaces, yielding a category similar to that of Simpson
[31, 32], in which separation is modelled by Day convolution [4].
We show that the two categories are equivalent, and that inde-
pendent combination corresponds to Day convolution across this
equivalence.

Conclusion. The equivalence of our two category-theoretic
models of core Lilac justifies the intricate measure-theoretic defini-
tion of independent combination: it corresponds, up to equivalence
of suitable categories, to the familiar notion of product space. This
brings Lilac’s model in line with existing models of bunched logic
based on doubly closed categories [17], and models of separation
logic based on Day convolution [5].

Though we have focused on this aspect, our newly developed
category-theoretic formulation of Lilac brings with it several addi-
tional advantages.

One of the advantages of our more abstract approach is that
it has allowed us to generalize core Lilac from a first-order to a
higher-order logic using BI hyperdoctrines [2]. This gives Lilac
the ability to internalize derived rules of inference as higher-order
propositions; in future work, we intend to explore whether this can
be used to help reason about higher-order probabilistic programs.

A second and more conceptual advantage to our abstract ap-
proach is that it suggests the potential for using nominal techniques
in probability theory. One of the inspirations for Lilac is the analogy
between concepts of probability theory and concepts from the the-
ory of mutable state: in Lilac’s semantic model, probability spaces
are like heaps, pullback 𝜎-algebras of random variables are like
references into the heap, and measurability of a random variable
with respect to a 𝜎-algebra is like ownership of a reference. Our new
models extend this analogy further, connecting probability theory
to nominal sets: 𝜎-algebras play the role of supports from nominal
sets, and independent combination of 𝜎-algebras corresponds to the
concept of separated product of two supports. These new correspon-
dences further corroborate recent work relating probability to name
binding [28, 32, 33], and suggest the potential for nominal-set-like
formulations of probability. In particular, we are currently investi-
gating the potential to use bunched type theory [15, 29, 30] as an
independence-aware metalanguage for developing the metatheory
of probabilistic languages, just as one can develop metatheory of
programming languages with local names in nominal sets [24].



Towards a Categorical Model of the Lilac Separation Logic

REFERENCES
[1] Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A probabilistic separation logic.

Proceedings of the ACM on Programming Languages 4, POPL (2019), 1–30.
[2] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. 2007. BI-hyperdoctrines,

higher-order separation logic, and abstraction. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 29, 5 (2007), 24–es.

[3] RyanCulpepper andAndrewCobb. 2017. Contextual equivalence for probabilistic
programswith continuous random variables and scoring. In European Symposium
on Programming. Springer, 368–392.

[4] Brian Day. 2006. On closed categories of functors. In Reports of the Midwest
Category Seminar IV. Springer, 1–38.

[5] Brijesh Dongol, Ian J Hayes, and Georg Struth. 2016. Convolution as a unifying
concept: Applications in separation logic, interval calculi, and concurrency. ACM
Transactions on Computational Logic (TOCL) 17, 3 (2016), 1–25.

[6] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract syntax and
variable binding. In Proceedings. 14th Symposium on Logic in Computer Science
(Cat. No. PR00158). IEEE, 193–202.

[7] Abraham Adolf Fraenkel. 1922. Der Begriff" definit" und die Unabhängigkeit des
Auswahlaxioms.

[8] Murdoch James Gabbay. 2001. A theory of inductive definitions with𝛼-equivalence:
semantics, implementation, programming language. Ph. D. Dissertation. University
of Cambridge.

[9] Murdoch J Gabbay and Andrew M Pitts. 2002. A new approach to abstract syntax
with variable binding. Formal aspects of computing 13 (2002), 341–363.

[10] Didier Galmiche, Daniel Méry, and David Pym. 2005. The semantics of BI and
resource tableaux. Mathematical Structures in Computer Science 15, 6 (2005),
1033–1088.

[11] Martin Hofmann. 1999. Semantical analysis of higher-order abstract syntax. In
Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
IEEE, 204–213.

[12] John M Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: a Modal Separation
Logic for Conditional Probability. Proceedings of the ACM on Programming
Languages 7, PLDI (2023), 148–171.

[13] Saunders MacLane and Ieke Moerdijk. 2012. Sheaves in geometry and logic: A
first introduction to topos theory. Springer Science & Business Media.

[14] Andrzej Mostowski. 1939. Über die Unabhängigkeit des Wohlordnungssatzes
vom ordnungsprinzip. Fundamenta mathematicae 32, 1 (1939), 201–252.

[15] Peter O’hearn. 2003. On bunched typing. Journal of functional Programming 13,
4 (2003), 747–796.

[16] Peter W. O’Hearn. 1993. A model for syntactic control of interference. Mathe-
matical structures in computer science 3, 4 (1993), 435–465.

[17] Peter W O’Hearn and David J Pym. 1999. The logic of bunched implications.
Bulletin of Symbolic Logic 5, 2 (1999), 215–244.

[18] Peter W O’Hearn and Robert D Tennent. 1995. Parametricity and local variables.
Journal of the ACM (JACM) 42, 3 (1995), 658–709.

[19] Frank Joseph Oles. 1982. A Category-Theoretic Approach to the Semantics of
Programming Languages. Ph. D. Dissertation. Syracuse University.

[20] Frank J Oles. 1985. Type algebras, functor categories, and block structure. In
Algebraic methods in semantics, Maurice Nivat and John C Reynolds (Eds.). CUP
Archive.

[21] Andrew Pitts. 2016. Nominal techniques. ACM SIGLOG News 3, 1 (2016), 57–72.
[22] Andrew M Pitts. 2003. Nominal logic, a first order theory of names and binding.

Information and computation 186, 2 (2003), 165–193.
[23] Andrew M Pitts. 2006. Alpha-structural recursion and induction. Journal of the

ACM (JACM) 53, 3 (2006), 459–506.
[24] Andrew M Pitts. 2013. Nominal sets: Names and symmetry in computer science.

Cambridge University Press.
[25] Andrew M Pitts and Murdoch J Gabbay. 2000. A metalanguage for programming

with bound names modulo renaming. In Mathematics of Program Construction:
5th International Conference, MPC 2000, Ponte de Lima, Portugal, July 3-5, 2000
Proceedings 5. Springer, 230–255.

[26] Andrew M Pitts and Ian DB Stark. 1993. Observable properties of higher order
functions that dynamically create local names, or: What’s new?. In International
Symposium on Mathematical Foundations of Computer Science. Springer, 122–141.

[27] John C Reynolds. 1981. The essence of Algol. In de Bakker and van Vliet, editors,
Algorithmic languages. IFIP, North-Holland Publishing Company (1981), 345–372.

[28] Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. 2021. Probabilis-
tic programming semantics for name generation. Proceedings of the ACM on
Programming Languages 5, POPL (2021), 1–29.

[29] Ulrich Schöpp. 2006. Names and binding in type theory. (2006).
[30] Ulrich Schöpp and Ian Stark. 2004. A dependent type theory with names and

binding. In Computer Science Logic: 18th International Workshop, CSL 2004, 13th
Annual Conference of the EACSL, Karpacz, Poland, September 20-24, 2004. Proceed-
ings 18. Springer, 235–249.

[31] Alex Simpson. 2016. Probability sheaves. https://synapse.math.univ-toulouse.
fr/index.php/s/QWrxKeXn31mN3gz Accessed: 2023-10-02.

[32] Alex Simpson. 2017. Probability Sheaves and the GiryMonad. In 7th Conference on
Algebra and Coalgebra in Computer Science (CALCO 2017) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 72), Filippo Bonchi and Barbara König
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
1:1–1:6. https://doi.org/10.4230/LIPIcs.CALCO.2017.1

[33] Alex Simpson. 2018. Category-theoretic structure for independence and condi-
tional independence. Electronic Notes in Theoretical Computer Science 336 (2018),
281–297.

[34] Ian Stark. 1996. Categorical models for local names. Lisp and Symbolic Computa-
tion 9 (1996), 77–107.

[35] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb.
2018. Contextual equivalence for a probabilistic language with continuous ran-
dom variables and recursion. Proceedings of the ACM on Programming Languages
2, ICFP (2018), 1–30.

[36] Hongseok Yang. 2001. Local reasoning for stateful programs. University of Illinois
at Urbana-Champaign.

[37] Yizhou Zhang and Nada Amin. 2022. Reasoning about “reasoning about rea-
soning”: semantics and contextual equivalence for probabilistic programs with
nested queries and recursion. Proceedings of the ACM on Programming Languages
6, POPL (2022), 1–28.

https://synapse.math.univ-toulouse.fr/index.php/s/QWrxKeXn31mN3gz
https://synapse.math.univ-toulouse.fr/index.php/s/QWrxKeXn31mN3gz
https://doi.org/10.4230/LIPIcs.CALCO.2017.1

	References

