Towards a Categorical Model of the Lilac Separation Logic

John Li Jon Aytac li.john@northeastern.edu jmaytac@sandia.gov

> Amal Ahmed amal@ccs.neu.edu

Philip Johnson-Freyd pajohn@sandia.gov

Steven Holtzen s.holtzen@northeastern.edu

Sandia
National
Laboratories

In ordinary separation logic,

x = y = x

- x = new 0;
- y = new 1;
- $(x \mapsto 0) * (y \mapsto 1)$

In ordinary separation logic,

y =

x and y point to disjoint heap locations

- x = new 0;
- y = new 1;
- $(x \mapsto 0) * (y \mapsto 1)$ t o disjoint heap locat

- In probabilistic separation logic,
 - $X \leftarrow \mathsf{flip} 1/2;$
 - $Y \leftarrow \mathsf{flip} 1/2;$

 - $X \sim \text{Ber}(1/2) * Y \sim \text{Ber}(1/2)$

In probabilistic separation logic,

 $Y \leftarrow \mathsf{flip} 1/2;$

 $X \leftarrow \mathsf{flip} 1/2;$

- $X \sim \text{Ber}(1/2) * Y \sim \text{Ber}(1/2)$
- X and Y are independent random variables

Lilac's separation is complete for independence

- Lilac's separation is complete for independence
- We used Lilac to verify a weighted sampling algorithm

- Lilac's separation is complete for independence
- We used Lilac to verify a weighted sampling algorithm
- For more, see:

JOHN M. LI, Northeastern University, USA AMAL AHMED, Northeastern University, USA STEVEN HOLTZEN, Northeastern University, USA

Lilac: A Modal Separation Logic for Conditional Probability

PI DI'23

• Separate probability spaces into independent subspaces:

Separate probability spaces into independent subspaces:

Separate probability spaces into independent subspaces:

$(\mathcal{F},\mu) \models P$ $(\mathcal{F},\mu) \bullet (\mathcal{G},\nu) \models P * Q$ if $(\mathcal{G},\nu) \models Q$

• Separate probability spaces into independent subspaces:

 $(\mathcal{F},\mu) \bullet (\mathcal{G},\nu) \vDash P \ast Q$ if independent combination ("disjoint union for spaces")

$(\mathcal{F},\mu) \models P$ $(\mathcal{G}, \nu) \models O$

PROOF. 1 is indeed a unit: if (\mathcal{F}, μ) is some other probability space on Ω then $\langle \mathcal{F}, \mathcal{F}_1 \rangle = \mathcal{F}$ and μ witnesses the independent combination of itself with μ_1 . And the relation " \mathcal{P} is an independent combination of Q and \mathcal{R} " is clearly symmetric in Q and \mathcal{R} , so (•) is commutative. We just need to show (•) is associative and respects (\sqsubseteq).

For associativity, suppose $(\mathcal{F}_1, \mu_1) \bullet$ There are three things to check:

- Some μ_{23} witnesses the combination of (\mathcal{F}_2, μ_2) and (\mathcal{F}_3, μ_3) .
- $(\langle \mathcal{F}_1, \langle \mathcal{F}_2, \mathcal{F}_3 \rangle), \mu_{1(23)}) = (\langle \langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle, \mu_{(12)3}).$

We'll show this as follows:

- (1) $\langle \mathcal{F}_1, \langle \mathcal{F}_2, \mathcal{F}_3 \rangle \rangle = \langle \langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle.$

To show the left-to-right inclusion for (1): by the universal property of freely-generated σ -algebras, we just need to show $\langle \langle \mathcal{F}_1, \mathcal{F}_2 \rangle, \mathcal{F}_3 \rangle$ is a σ -algebra containing \mathcal{F}_1 and $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$. It clearly contains \mathcal{F}_1 . To show it contains $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$, we just need to show it contains \mathcal{F}_2 and \mathcal{F}_3 (by the universal property again), which it clearly does. The right-to-left inclusion is similar.

For (2), if $E_2 \in \mathcal{F}_2$ and $E_3 \in \mathcal{F}_3$ then $\mu_{23}(E_2 \cap E_3) = \mu_{(12)3}(E_2 \cap E_3) = \mu_{(12)3}((\Omega \cap E_2) \cap E_3) = \mu_{(12)3}((\Omega \cap E_3) \cap E_3) = \mu_{(12)$ $\mu_{12}(\Omega \cap E_2)\mu_3(E_3) = \mu_1(\Omega)\mu_2(E_2)\mu_3(E_3) = \mu_2(E_2)\mu_3(E_3)$ as desired.

For (3), we need $\mu_{(12)3}(E_1 \cap E_{23}) = \mu_1(E_1)\mu_{23}(E_{23})$ for all $E_1 \in \mathcal{F}_1$ and $E_{23} \in \langle \mathcal{F}_2, \mathcal{F}_3 \rangle$. For this we use the π - λ theorem. Let \mathcal{E} be the set $\{E_2 \cap E_3 \mid E_2 \in \mathcal{F}_2, E_3 \in \mathcal{F}_3\}$ of intersections of events in \mathcal{F}_2 and \mathcal{F}_3 . \mathcal{E} is a π -system that generates $\langle \mathcal{F}_2, \mathcal{F}_3 \rangle$ (lemma B.2). Let \mathcal{G} be the set of events E_{23} such that $\mu_{(12)3}(E_1 \cap E_{23}) = \mu_1(E_1)\mu_{23}(E_{23})$ for all $E_1 \in \mathcal{F}_1$. We are done if $\langle \mathcal{E} \rangle \subseteq \mathcal{G}$. By the π - λ theorem, we just need to check that $\mathcal{E} \subseteq \mathcal{G}$ and that \mathcal{G} is a λ -system. We have $\mathcal{E} \subseteq \mathcal{G}$ because if $E_2 \in \mathcal{F}_2$ and $E_3 \in \mathcal{F}_3$ then $\mu_{(12)3}(E_1 \cap (E_2 \cap E_3)) = \mu_1(E_1)\mu_2(E_2)\mu_3(E_3) = \mu_1(E_1)\mu_{23}(E_2 \cap E_3)$. To see that \mathcal{G} is a λ -system, note that $\mu_1(E_1)\mu_{23}(E_{23}) = \mu_{(12)3}(E_1)\mu_{(12)3}(E_{23})$ and so \mathcal{G} is actually equal to \mathcal{F}_1^{\perp} (the set of events independent of \mathcal{F}_1), a λ -system by Lemma B.3.

To show (•) respects (\sqsubseteq), suppose (\mathcal{F}, μ) \sqsubseteq (\mathcal{F}', μ') and (\mathcal{G}, ν) \sqsubseteq (\mathcal{G}', ν') and (\mathcal{F}', μ')•(\mathcal{G}', ν') = $(\langle \mathcal{F}', \mathcal{G}' \rangle, \rho')$. We need to show (1) $(\mathcal{F}, \mu) \bullet (\mathcal{G}, \nu) = (\langle \mathcal{F}, \mathcal{G} \rangle, \rho)$ and (2) $(\langle \mathcal{F}, \mathcal{G} \rangle, \rho) \sqsubseteq (\langle \mathcal{F}', \mathcal{G}' \rangle, \rho')$ for some ρ . Define ρ to be the restriction of ρ' to $\langle \mathcal{F}, \mathcal{G} \rangle$. Now (1) holds because $\rho(F \cap G) =$ $\rho'(F \cap G) = \rho'(F)\rho'(G) = \rho(F)\rho(G)$ for all $F \in \mathcal{F}$ and $G \in \mathcal{G}$ (the second step follows from $\mathcal{F} \subseteq \mathcal{F}'$ and $\mathcal{G} \subseteq \mathcal{G}'$). For (2), $\langle \mathcal{F}, \mathcal{G} \rangle \subseteq \langle \mathcal{F}', \mathcal{G}' \rangle$ because $\mathcal{F} \subseteq \mathcal{F}'$ and $\mathcal{G} \subseteq \mathcal{G}'$, and $\rho = \rho'|_{\langle \mathcal{F}, \mathcal{G} \rangle}$ by construction.

$$(\mathcal{F}_2, \mu_2) = (\mathcal{F}_{12}, \mu_{12}) \text{ and } (\mathcal{F}_{12}, \mu_{12}) \bullet (\mathcal{F}_3, \mu_3) = (\mathcal{F}_{(12)3}, \mu_{(12)3}).$$

• Some $\mu_{1(23)}$ witnesses the combination of (\mathcal{F}_1, μ_1) and $(\mathcal{F}_{23}, \mu_{23})$.

(2) Define $\mu_{23} := \mu_{(12)3}|_{\mathcal{F}_{23}}$. This is a witness for (\mathcal{F}_2, μ_2) and (\mathcal{F}_3, μ_3) . (3) Define $\mu_{1(23)} := \mu_{(12)3}$. This is a witness for (\mathcal{F}_1, μ_1) and $(\mathcal{F}_{23}, \mu_{23})$.

?!

• Q: Why isn't separation just about product spaces?

?!

Q: Why isn't separation just about product spaces?

?!

- Q: Why isn't separation just about product spaces?
- A: ...

10

Towards a categorical answer

- Q: Why isn't separation just about product spaces?
- A:

Towards a categorical answer

- Q: Why isn't separation just about product spaces? • A: It is just about product spaces... up to a suitable equivalence
- of categories

12

- But it didn't always used to be this way:

- But it didn't always used to be this way:

A Model for Syntactic Control of Interference

P. W. O'Hearn School of Computer and Information Science Syracuse University, Syracuse, NY, USA 13224-4100

- But it didn't always used to be this way:

6.1. The Tensor Product

The bifunctor \otimes on **K** is a subfunctor of the categorical product \times , restricted so that different components are independent of one another.

If A, B are **K**-objects then

 $(A \otimes B)X = \{(a, b) \in A(X) \times B(X) \mid a \Delta b\}$, ordered componentwise $(A \otimes B) f(a, b) = (A(f) a, B(f) b)$

- But it didn't always used to be this way:

6.1. The Tensor Product

The bifunctor \otimes on **K** is a subfunctor of the categorical product \times , restricted so that different components are independent of one another.

Day convolution w.r.t. coproduct of heap shapes

- But it didn't always used to be this way:

6.1. The Tensor Product

the Schanuel topos* Sch

The bifunctor \otimes on **K** is a subfunctor of the categorical product \times , restricted so that different components are independent of one another.

Day convolution w.r.t. coproduct of heap shapes

Q: What does Day convolution have to do with disjoint union?

 Q: What does Day convolution have to do with disjoint union? • A: It is disjoint union... up to a suitable equivalence of categories

Saunders Mac Lane **leke Moerdijk**

Sheaves in Geometry and Logic

A First Introduction to **Topos Theory**

 Q: What does Day convolution have to do with disjoint union? • A: It is disjoint union... up to a suitable equivalence of categories

, Theorem III.9.2: Sch \simeq Nom.

Saunders Mac Lane **leke Moerdijk**

Sheaves in Geometry and Logic

A First Introduction to **Topos Theory**

Q: What does Day convolution have to do with disjoint union? • A: It is disjoint union... up to a suitable equivalence of categories

the category of nominal sets , Theorem III.9.2: Sch \simeq Nom.

- Across this equivalence,

Day conv. w.r.t. coproduct IN Sch

Q: What does Day convolution have to do with disjoint union? • A: It is disjoint union... up to a suitable equivalence of categories

pairs of disjoint heaps IN Nom

- Q: Why isn't separation just about product spaces?
- of categories

• A: It is just about product spaces... up to a suitable equivalence

- Q: Why isn't separation just about product spaces?
- of categories

ProbSch

A "probabilistic Schanuel topos"

• A: It is just about product spaces... up to a suitable equivalence

- Q: Why isn't separation just about product spaces?
- of categories

ProbSch

A "probabilistic Schanuel topos"

• A: It is just about product spaces... up to a suitable equivalence

ProbNom

"Probabilistic nominal sets"

- Q: Why isn't separation just about product spaces?
- of categories

ProbSch

A "probabilistic Schanuel topos"

• A: It is just about product spaces... up to a suitable equivalence

ProbNom

"Probabilistic nominal sets"

 \sim

- Q: Why isn't separation just about product spaces?
- of categories
- Across this equivalence,

Day conv. w.r.t. product ProbSch

• A: It is just about product spaces... up to a suitable equivalence

independent combination **ProbNom**

• The naive picture is right (with enough category theory):

• The naive picture is right (with enough category theory):

The naive picture is right (with enough category theory):

And independent combination is right too!

Corroborates recent work linking probability to names

Corroborates recent work linking probability to names

Probabilistic Programming Semantics for Name Generation

MARCIN SABOK, McGill University, Canada SAM STATON, University of Oxford, United Kingdom DARIO STEIN, University of Oxford, United Kingdom MICHAEL WOLMAN, McGill University, Canada

Probability Sheaves and the Giry Monad*

Alex Simpson

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia Alex.Simpson@fmf.uni-lj.si

- Corroborates recent work linking probability to names
- New nominal interpretations of probabilistic concepts:

king probability to names of probabilistic concepts:

- Corroborates recent work linking probability to names
- New nominal interpretations of probabilistic concepts:

Probability theory Measurable space Measurability Probability space Probabilistic independence

Nominal sets Support \sim Supportedness \sim Store \sim Disjointness of stores \sim

- Corroborates recent work linking probability to names New nominal interpretations of probabilistic concepts:

Probability theory Measurable space Measurability Probability space Probabilistic independence

• \implies maybe nominal techniques apply to probability?

https://johnm.li/lafi24.pdf

- Nominal sets Support \sim Supportedness \sim Store \sim
- Disjointness of stores \sim

