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* In ordinary separation logic,
X =newo0;
Yy =newl;

(x> 0) « (e 1)

T

X and y point to disjoint heap locations
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Lilac I1s a probabilistic separation logic
* In probabilistic separation logic,

X « flip 1/2;
Y « flip 1/2;
X ~ Ber(1/2) = Y ~ Ber(1/2)

T

X and Y are independent random variables
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Lilac I1s a probabilistic separation logic

 Lilac's separation is complete for independence

* We used Lilac to verify a weighted sampling algorithm
* For more, see:

Lilac: A Modal Separation Logic for Conditional Probability
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» Separate probability spaces into independent subspaces:

(F,u)»(G,v) E P00 if
\ (,v) EQ

Independent combination
("disjoint union for spaces")



The fine print

PROOF. 1 is indeed a unit: if (7, y) is some other probability space on Q then (¥, %) = F and u
witnesses the independent combination of itself with y4. And the relation “# is an independent
combination of Q and R” is clearly symmetric in Q and R, so (¢) is commutative. We just need to
show (*) is associative and respects (C).

For associativity, suppose (1, p1) ® (%2, p2) = (F12, p12) and (Fiz, p12) © (F3, p3) = (F12)3: B(12)3)-
There are three things to check:

e Some 153 Witnesses the combination of (%5, uz) and (73, ys).
e Some /11 (23) Witnesses the combination of (%7, p11) and (23, p23).

o ({1, <7:2,7:3>>,111(23)) = (((ﬁ,%>,%>>ﬂ(12)3)-
We’'ll show this as follows:

(1) (F1, (F2, F3)) = ((F1, F2), F3)-
(2) Define p33 := p(12)3| 55, This is a witness for (%2, p2) and (F3, y3).
(3) Define p(23) = p(12)3- This is a witness for (¥1, 1) and (523, p23).

To show the left-to-right inclusion for (1): by the universal property of freely-generated o-algebras,
we just need to show ((F7, #2), F3) is a o-algebra containing ¥; and (%5, ¥3). It clearly contains ;.
To show it contains (%5, ¥3), we just need to show it contains ¥, and %3 (by the universal property
again), which it clearly does. The right-to-left inclusion is similar.

For (2), if E; € ¥, and E3 € #3 then py3(E; N E3) = p12)3(Ez N E3) = p12)3((Q N Ez) N E3) =
p12(Q N Ez)p3(E3) = p1 () p2(E2) 3 (Es) = pa(Ez)pi3(E3) as desired.

For (3), we need 1(12)3(E1 N Ez3) = p1(E1) pa3(E23) for all E; € F1 and Ey3 € (F, ¥3). For this we
use the 7-A theorem. Let & be the set {E; N E3 | E; € %5, E5 € 3} of intersections of events in ¥
and F3. & is a w-system that generates (¥, ¥3) (lemma B.2). Let G be the set of events E,3 such
that p(12)3(E1 N Ez3) = p1(E1)p23(Ezs) for all E; € F1. We are done if () C G. By the n-A theorem,
we just need to check that & C G and that G is a A-system. We have & C G because if E; € ¥, and
E3 € 7’3 then 11(12)3(E1 N (Ez N Eg)) = 1 (El)[lz(Ez)/.l3(E3) = H1 (El)[lzg (Ez N E3) To see that Q is a
A-system, note that p; (E1)p23(E23) = p12)3(E1)#(12)3(E23) and so G is actually equal to 7'? (the
set of events independent of #7), a A-system by Lemma B.3.

To show () respects (C), suppose (F,p) E (F',p')and (G,v) E (G',V') and (F7', ') (G', V') =
((F',G"), p’). We need to show (1) (F, p) ¢ (G, v) = (¥, G). p) and (2) (¥, G). p) E (F".G"). p’)
for some p. Define p to be the restriction of p’ to (¥, G). Now (1) holds because p(F N G) =
p'(FNG) = p’(F)p’(G) = p(F)p(G) for all F € ¥ and G € G (the second step follows from
FCF' and G C G'). For (2),(F,G) C(F',G') because F C ¥ and G C G’, and p = p’|(¥.g)

by construction. O
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Towards a categorical answer

* Q: Why isn't separation just about product spaces?

* A: It Is just about product spaces... up to a suitable equivalence
of categories
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First, some history...

* Today, the standard model of separation is heap-disjoint-union.
 But it didn't always used to be this way:

A Model for Syntactic Control of
Interference

P. W. O’Hearn
School of Computer and Information Science
Syracuse Unwversity, Syracuse, NY, USA 13224-4100
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First, some history...

* Today, the standard model of separation is heap-disjoint-union.
 But it didn't always used to be this way:

6.1. The Tensor Product

The bifunctor ® on K 1s a subfunctor of the categorical product x, restricted so that
different components are independent of one another.

It A, B are K-objects then

(AB)X = {(a,b) € A(X)xB(X)|aAb}, ordered componentwise
(A@B) f(a,b) = (A(f)a, B(f)b)
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* Today, the standard model of separation is heap-disjoint-union.
 But it didn't always used to be this way:

6.1. The Tensor Product the Schanuel topos™ Sch

The bifunctor ® on K 1s a subfunctor of the categorical product x, restricted so that
different components are independent of one another.

Day convolution w.r.t. coproduct of heap shapes
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Saunders Mac Lane
leke Moerdijk
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Geometry
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A First Introduction to
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First, some history...

* Q: What does Day convolution have to do with disjoint union?
* A: It Is disjoint union... up to a suitable equivalence of categories

the category of nominal sets

Saunders Mac Lane
leke Moerdijk

- Theorem 111.9.2: Sch ~ Nom.

Sheaves in
Geometry
and Logic

A First Introduction to
Topos Theory
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First, some history...

* Q: What does Day convolution have to do with disjoint union?

* A: It Is disjoint union... up to a suitable equivalence of categories

e Across this equivalence,

Day conv. w.r.t. coproduct pairs of disjoint heaps
IN ad IN
Sch Nom
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Back to the present day

* Q: Why isn't separation just about product spaces?

* A: It Is just about product spaces... up to a suitable equivalence
of categories

e Across this equivalence,

Day conv. w.r.t. product iIndependent combination
IN ~ IN
ProbSch ProbNom
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Upshot

* The naive picture is right (with enough category theory):

v

 And independent combination is right too!
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* Corroborates recent work linking probability to names

Probabilistic Programming Semantics for Name Generation
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MICHAEL WOLMAN, McGill University, Canada

Probability Sheaves and the Giry Monad*
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Upshot

* Corroborates recent work linking probability to names
* New nominal interpretations of probabilistic concepts:

Probability theory Nominal sets
Measurable space ~ Support
Measurability ~ Supportedness
Probability space ~ Store

Probabilistic independence ~ Disjointness of stores
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Upshot

* Corroborates recent work linking probability to names
* New nominal interpretations of probabilistic concepts:

Probability theory Nominal sets
Measurable space ~ Support
Measurability ~ Supportedness
Probability space ~ Store

Probabilistic independence ~ Disjointness of stores

« —> maybe nominal techniques apply to probability? -


https://johnm.li/lafi24.pdf

