
New foundations for probabilistic separation logic∗†

John Li1, Amal Ahmed2, and Steven Holtzen3

1,2,3Northeastern University

Probabilistic reasoning frequently requires decomposing a situation into probabilistically independent
pieces. We present a separation logic supporting this decomposition. Inspired by an analogy with mutable
state where sampling corresponds to dynamic allocation, we show how probability spaces over a fixed, ambient
sample space appear to be the natural analogue of heap fragments, and present a new combining operation
on them such that probability spaces behave like heaps and measurability of random variables behaves like
ownership. Unlike prior work [1], the resulting program logic enjoys a frame rule identical to the ordinary
one, and naturally accommodates advanced features like continuous random variables and reasoning about
quantitative properties of programs.

To illustrate the analogy between probability and mutable state, consider the following program:

let X = flip 1/2 in

let Y = flip 1/2 in

observe X = T;

ret (X,Y)

(flip2)

This program uses flip to sample the result of two uniformly distributed values in {T, F}, and observe to
condition on the event X = T. The idea is to think of this program as carrying along a probability space
(Ω,F , µ) as it executes, analogous to how programs with mutable state carry along a heap. For this example
we fix the sample space Ω to be the unit square [0, 1] × [0, 1]. This allows us to visualize σ-algebras F as
partitionings of the unit square into a finite number of regions – each region denotes an event – and µ as the
map that sends each event to its area. We can visualize execution of flip2 as:

let X = flip 1/2 in

FT X

︸ ︷︷ ︸
PX

let Y = flip 1/2 in

FT

T

F
Y

︸ ︷︷ ︸
PX

•

FT

T

F
Y

︸ ︷︷ ︸
PY

=

FT

T

F︸ ︷︷ ︸
PXY

observe X = T;

FT

T

F
Y

︸ ︷︷ ︸
PT

•

FT

T

F
Y

︸ ︷︷ ︸
PY

=

FT

T

F︸ ︷︷ ︸
PTY

ret (X,Y)

∗Published as an extended abstract at LAFI 2023
†Full paper at https://john-ml.github.io/lilac-a-modal-separation-logic-for-conditional-probability.pdf

1

https://john-ml.github.io/lilac-a-modal-separation-logic-for-conditional-probability.pdf

Initially, F only contains the trivial events ∅ and Ω, analogous to how programs in heap-manipulating
languages start with an empty heap. After the first line is executed two things change:

• Two new events are allocated, each covering half the sample space. These are the blue partition on
the left and the orange partition on the right; they form the probability space labeled PX . This is like
how new allocates a fresh memory cell on the heap: probability spaces correspond to heap fragments.

• The flip operation yields a random variable X : Ω → {T, F} that maps blue points in Ω to T and
orange points in Ω to F; this is depicted by the arrows. Concretely, X(ω1, ω2) = T if ω1 < 1/2 and F

otherwise. This is like how new returns the location of the newly allocated heap cell: random variables
correspond to locations.

The next line allocates a second probability space PY , visualized by the dotted region and dashed
region, and a new random variable Y that associates dotted points to T and dashed points to F; concretely,
Y (ω1, ω2) = T if ω2 > 1/2 and F otherwise. In heap-manipulating languages, new generates a fresh heap cell,
so that the entire heap after executing new is a disjoint union of the old heap and the newly allocated cell.
Analogously, flip allocates a probability space statistically independent from the old one, so that the entire
space after executing the second flip is what we dub an independent combination, written (•), of the old
space PX and the newly allocated one PY . The space labeled PXY visualizes the independent combination
PX •PY . The events of PXY (i.e., the four partitions in the figure) form the σ-algebra generated by the events
of PX and PY ; their probabilities, as suggested by the areas of the partitions, are products of probabilities
of corresponding events in PX and PY .

Finally, the observe statement conditions on the event X = T. This destructively updates the underlying
probability space from the independent combination PX •PY to the independent combination PT •PY , where
PT is the probability space which assigns probability 1 to the eventX = T. SinceX is statistically independent
from Y , this observe statement does not affect the distribution of Y in any way; this is completely analogous
to how, in the heap-manipulating setting, a write to a location ℓ does not affect the values stored in locations
disjoint from ℓ.

This intuition that probabilistic programs manipulate probability spaces as they execute motivates our
model of separation logic. In particular, the insight that disjoint union of heaps corresponds to independent
combinations of probability spaces underlies our interpretation of the standard separation logic connectives.
We prove that probability spaces over a fixed, ambient sample space form a Kripke resource monoid [2]
under independent combination. This gives a standard interpretation of separating conjunction, in which
P |= P1 ∗ P2 iff there exists a “splitting” of P into an independent combination P1 • P2 such that P1 |= P1

and P2 |= P2, and validates all the usual laws of separation logic. Atop this foundation, we give meaning to
Hoare triples and to the following probability-specific propositions:

• ownx asserts “ownership” of a random variable x but no knowledge of its distribution, like x 7→ − in
ordinary separation logic. Its interpretation is given by measurability of the random variable denoted
by x with respect to the underlying probability space.

• x ∼ µ asserts a random variable x is distributed as µ, like x 7→ v in ordinary separation logic.

• x = y is equality of random variables.

Then we validate the usual derived rules; in particular, our logic enjoys a frame rule identical to the usual
one, and rules for flip and observe that closely resemble the corresponding rules for allocation and mutable
update in ordinary separation logic:

frame
{P} e {x.Q(x)}

{F ∗ P} e {x. F ∗Q(x)}
flip

{emp} flip p {x. x ∼ Ber p}
observe

{own b} observe b {x. b = T}

As evidence that our interpretation of separating conjunction faithfully captures probabilistic independence,
we prove that the iterated separating conjunction own x1 ∗ . . . ∗ own xn is semantically valid if and only
if the random variables denoted by x1, . . . , xn are mutually independent.

2

Though we only mentioned programs involving discrete random variables here, our model of separation
logic is defined in terms of general probability spaces, and so supports reasoning about programs that sample
from continuous distributions as well.

Finally, we sketch how our logic can be further extended to support reasoning about probabilities of
specific events, expectations of random variables, and conditional probability; thanks to the close corre-
spondence between our semantic model and standard probability-theoretic objects (probability spaces and
random variables), we describe how these extensions can be performed in a relatively straightforward way.

References

[1] Gilles Barthe, Justin Hsu, and Kevin Liao. A probabilistic separation logic. Proc. ACM Program. Lang.,
4(POPL), dec 2019.

[2] Didier Galmiche, Daniel Méry, and David Pym. The semantics of bi and resource tableaux. Mathematical
Structures in Computer Science, 15(6):1033–1088, 2005.

3

