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ABSTRACT
Currently, there is a gap between the tools used by probability

theorists and those used in formal reasoning about probabilistic

programs. On the one hand, a probability theorist decomposes

probabilistic state along the simple and natural product of proba-

bility spaces. On the other hand, recently developed probabilistic

separation logics decompose state via relatively unfamiliar measure-

theoretic constructions for computing unions of sigma-algebras

and probability measures. We bridge the gap between these two

perspectives by showing that these two methods of decomposition

are equivalent up to a suitable equivalence of categories. Our main

result is a probabilistic analog of the classic equivalence between

the category of nominal sets and the Schanuel topos. Through this

equivalence, we validate design decisions in prior work on proba-

bilistic separation logic and create new connections to nominal-set-

like models of probability.
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1 INTRODUCTION
Separation logic [41], now a standard tool for reasoning about

programs with shared mutable state, grew out of Reynolds’s Syn-

tactic Control of Interference [40] — a substructural system for

controlling the interaction of imperative program fragments. The

basic ingredients for today’s interpretations of separation logic

connectives, present in the original model of Syntactic Control

of Interference [34], can be seen as living in a category of func-

tors known as the Schanuel topos, with noninterference defined

in terms of the coproduct of finite sets. Over the years, this model

has been reformulated to suit the needs of formal reasoning about

imperative programs: modern models of separation logic live not in

the Schanuel topos, but in categories more like Set, and separation
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is interpreted not by coproduct, but by algebraic structures such

as partial commutative monoids (PCMs) [7, 21]. In particular, the

now-standard model of separation logic in which separating con-

junction splits stores into disjoint pieces is defined in terms of the

partial function ⊎ sending a pair of disjoint stores to their union,

giving rise to a PCM of stores. This shift in perspective is justified

by a classic equivalence of categories:

Fact 1.1. The Schanuel topos Sch is equivalent to the category

Nom of nominal sets, and the original coproduct-based model of

separation in Sch corresponds to the standard union-based model

in Nom across this equivalence.
1

Today, there is a pressing need for syntactic control of prob-
abilistic interference — that is, for establishing the probabilistic
independence of program fragments. In response to this need, re-

cent work has developed a number of probabilistic separation log-

ics [3, 4, 6, 29], whose semantic models are given by PCMs made of

probability-theoretic objects. Lilac [29] is a separation logic whose

PCM-based model is particularly well-behaved: its notion of sepa-

ration coincides with probabilistic independence [29, Lemma 2.5],

and yields a frame rule identical to the standard one for store-based

separation logics.

However, Lilac’s PCM model does not match a probability the-

orist’s intuition. One expects separation to be interpreted via a

standard product of probability spaces [28], but Lilac interprets

separation using independent combination: a partial binary opera-

tion on probability spaces constructed out of low-level set-theoretic

operations on 𝜎-algebras. Moreover, Lilac’s model fixes up front an

unconventional sample space — the space [0, 1]𝜔 of infinite streams

of real numbers in the interval, known as the Hilbert cube — and

the soundness of Lilac’s proof rules depends on various properties

specific to it. These contrasts between Lilac’s model and textbook

probability raise a question: how do we know Lilac provides a good
notion of separation for probabilistic separation logic?

We answer this question by showing Lilac’s seemingly non-

standard independent combination is in fact equivalent to a prob-
ability theorist’s product-based intuition of state decomposition.

Our result is a probabilistic analog of Fact 1.1: just as the coproduct

model of separation corresponds to the now-standard model based

on ⊎ across an equivalence between the Schanuel topos and Nom,

the probability theorist’s intuitive product-based model of indepen-

dence corresponds to Lilac’s independent-combination-basedmodel

across an equivalence between a category of enhanced measurable
1
For a good reference documenting this equivalence, see Pitts [38, §6.3].
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sheaves and a category of absolutely continuous sets (Theorem 4.35).

Our contributions are as follows:

• We introduce absolutely continuous sets: just as nominal sets are

sets equipped with an action by permutations of names, abso-

lutely continuous sets are sets equipped with a continuous action

by measurable permutations of the Hilbert cube.

• We prove analogs of the equivalence Sch ≃ Nom for both discrete

and continuous probability (Theorems 3.18 and 4.34). In partic-

ular, we show that the category Set≪ of absolutely continuous

sets is equivalent to a topos EMS of enhanced measurable sheaves:
a probabilistic analog of the Schanuel topos.

• We show that Set≪ provides a natural background category for a

fragment of Lilac. Theorem 4.35 then shows that, by transporting

across the equivalence Set≪ ≃ EMS, Lilac’s model corresponds

to amodel in EMSwhere separation arises naturally from product

of probability spaces via Day convolution [7, 15, 35].

2 THE NOMINAL SITUATION
Our main result is a probabilistic analog of Fact 1.1 (Theorem 4.35).

To set the stage, we first make Fact 1.1 a precise mathematical

statement (Proposition 2.18). We devote this section to describing

the necessary pieces in this comfortable setting; the material in this

section is standard, but we will deviate occasionally from the usual

presentation in order to focus on the aspects that are most relevant

to our eventual probabilistic counterpart.

At its core, Fact 1.1 states that two distinct approaches to mod-

elling store-separation are equivalent. To illustrate this fact we will

study a tiny separation logic consisting of propositions 𝑃,𝑄 about

integer-valued stores:

𝑃,𝑄 ::= 𝑥 ↦→ 𝑖 | True | 𝑃 ∗𝑄. (TinySep)

TinySep propositions are well-formed according to a judgment

Γ ⊢ 𝑃 defined as usual: a context Γ is a set of logical variables 𝑥 ,

and Γ ⊢ 𝑃 if Γ contains the variables used in 𝑃 . Fact 1.1 asserts the

equivalence of two different models for TinySep:

Model 1: separation as coproduct. In this model, a store consists

of two components: (1) a shape 𝐿 given as a finite set of available

locations (i.e., memory addresses), and (2) a valuation 𝑠 : 𝐿 ⇀ Z,
a partial function assigning values to a subset of the shape. An

example is shown in Figure 1a; the store 𝑠 has shape {0x0, 0x1, 0x2},
and the valuation maps 0x0 ↦→ 8 and so on. Under this model, the

meaning of a proposition depends on the shape 𝐿: the interpretation

of a proposition Γ ⊢ 𝑃 has form ⟦Γ ⊢ 𝑃⟧𝐿
1
: (Γ → 𝐿) → P(𝐿 ⇀ Z),

associating each substitution 𝛾 : Γ → 𝐿 to the set ⟦Γ ⊢ 𝑃⟧𝐿
1
(𝛾) of

𝐿-shaped valuations satisfying 𝑃 .

Under this interpretation, we define 𝑠 ∈ ⟦True⟧𝐿
1
(𝛾) always and

𝑠 ∈ ⟦𝑥 ↦→ 𝑖⟧𝐿
1
(𝛾) if and only if 𝑠 (𝛾 (𝑥)) = 𝑖 . Separating conjunction

is defined via the coproduct of store shapes: 𝑃1 ∗ 𝑃2 holds of an
𝐿-shaped valuation 𝑠 if and only if there are valuations 𝑠1 of shape

𝐿1 and 𝑠2 of shape 𝐿2, and an injective function 𝑖 : 𝐿1 + 𝐿2 ↩→ 𝐿

embedding the coproduct 𝐿1 + 𝐿2 into 𝐿 such that 𝑠1 satisfies 𝑃1
and 𝑠2 satisfies 𝑃2 and 𝑠1, 𝑠2 embed into 𝑠 along 𝑖 . This situation is

visualized in Figure 1a. For example,

𝑠 ∈ ⟦(𝑥 ↦→ 8) ∗ (𝑦 ↦→ 3)⟧{0x0,0x1,0x2}
1

({𝑥 ↦→ 0x0, 𝑦 ↦→ 0x1})

𝑠 𝑠1

0x0 8 8 0x0

0x1 3

0x2 4 3 0x0
𝑠2

𝑖

𝑖

(a) Model 1: coproduct.

𝑠1 𝑠2 𝑠

0x0 8 8

0x1
⊎

3 ⊆ 3

0x2 4

.

.

.
.
.
.

.

.

.
.
.
.

(b) Model 2: union.

Figure 1: Visualizing separation in Model 1 and Model 2.

is witnessed by setting 𝑠1 to the {0x0}-shaped valuation {0x0 ↦→ 8}
and 𝑠2 to the {0x0}-shaped valuation {0x0 ↦→ 3} and 𝑖 : {0x0} +
{0x1} ↩→ {0x0, 0x1} to the injection defined by 𝑖 (inl(0x0)) = 0x0
and 𝑖 (inr(0x0)) = 0x1, where inl : 𝐿1 → 𝐿1 + 𝐿2 and inr : 𝐿2 →
𝐿1 + 𝐿2 are the coproduct injections.

Model 2: separation as union. In this model, one fixes upfront a

“universal store shape” into which all store shapes can be embedded.

Any countably-infinite set will do; we choose the natural numbers

N. A store is a partial function 𝑠 : N
fin−−⇀ Z defined on finitely many

values of its domain, and a proposition Γ ⊢ 𝑃 denotes a function

⟦Γ ⊢ 𝑃⟧
2
: (Γ → N) → P(N fin−−⇀ Z). The interpretations of True

and 𝑥 ↦→ 𝑖 are as in the shape-indexed model: 𝑠 ∈ ⟦True⟧
2
(𝛾)

always and 𝑠 ∈ ⟦𝑥 ↦→ 𝑖⟧
2
(𝛾) if and only if 𝑠 (𝛾 (𝑥)) = 𝑖 . Sepa-

rating conjunction is defined via union of stores: a store 𝑠 is in

⟦𝑃1 ∗ 𝑃2⟧2 (𝛾) if and only if there exist disjoint stores 𝑠1 and 𝑠2
with 𝑠1 ⊎ 𝑠2 ⊆ 𝑠 such that 𝑠1 is in ⟦𝑃1⟧2 (𝛾) and 𝑠2 is in ⟦𝑃2⟧2 (𝛾).
Figure 1b visualizes an example: 𝑠 ∈ ⟦(𝑥 ↦→ 8) ∗ (𝑦 ↦→ 3)⟧

2
{𝑥 ↦→

0x0, 𝑦 ↦→ 0x1} holds because 𝑠1 and 𝑠2 have a union contained in 𝑠

and 𝑠1 satisfies 𝑥 ↦→ 8 and 𝑠2 satisfies 𝑦 ↦→ 3.

Relating the two models. Model 1 and Model 2 are equivalent

by Fact 1.1. The equivalence is based on the following idea. Every

store shape 𝐿 can be encoded as a finite subset of N via a suitable

pair of functions enc𝐿 : 𝐿 → N and dec𝐿 : N ⇀ 𝐿. Choosing

an arbitrary such pair (enc𝐿, dec𝐿) for every 𝐿 allows translating

Model 1 into Model 2 in a bijective way: an 𝐿-shaped store 𝑠 :

𝐿 ⇀ Z corresponds to a finite partial function 𝑠 ◦ dec𝐿 : N
fin−−⇀ Z,

and a Model-1-substitution 𝛾 : Γ → 𝐿 corresponds to a Model-2-

substitution enc𝐿 ◦ 𝛾 : Γ → N. Via these translations, it holds that
𝑠 ∈ ⟦Γ ⊢ 𝑃⟧𝐿

1
(𝛾) if and only if 𝑠◦dec𝐿 ∈ ⟦Γ ⊢ 𝑃⟧2 (enc𝐿◦𝛾) for all𝐿-

shaped valuations 𝑠 , propositions Γ ⊢ 𝑃 , and substitutions𝛾 : Γ → 𝐿,

so both models induce the same notion of store-satisfaction.

This equivalence should seem plausible enough given how tiny

TinySep is. What is remarkable about Fact 1.1 is that this equiva-

lence continues to hold when the interpretations ⟦−⟧(−)
1

and ⟦−⟧
2

are extended to include all the usual features of separation logic,

including separating implication −∗, the intuitionistic connectives
∧,∨,→, False, quantification at both first-order and higher type,

quantification over propositions, predicates defined by structural

recursion, and so on. In short, the semantic domains of Model 1 are

equivalent in expressive power to those of Model 2.



A Nominal Approach to Probabilistic Separation Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

Rather than laboriously verifying one by one that the standard

interpretations of each of these features coincide, Fact 1.1 estab-

lishes a general result. The key is to place Model 1 and Model 2 into

the context of suitable categories that bring out their essential struc-

ture. Model 1 naturally lives in a category Sch called the Schanuel
topos: the interpretation ⟦Γ ⊢ 𝑃⟧(−)

1
of a proposition 𝑃 defines a

Sch-morphism from a Sch-object representing Γ-substitutions to a

Sch-object representing store-predicates. Model 2 naturally lives in

the category Nom of nominal sets [38]: the interpretation ⟦Γ ⊢ 𝑃⟧
2

defines a Nom-morphism from a nominal set of Γ-substitutions
to a nominal set of store-predicates. Having placed Model 1 and

Model 2 into suitable background categories, Fact 1.1 follows from

a classic theorem: the categories Sch and Nom are known to be

equivalent [38, §6.3], and inspecting the proof of this equivalence

shows that the functor Sch→ Nom witnessing it sends Model 1 to

Model 2 via the construction involving (enc𝐿, dec𝐿).
The rest of this section is devoted to filling in the details of this

category-theoretic setup. First we will describe howModel 1 lives in

Sch and Model 2 lives in Nom. Then we will highlight the essential

properties of this setup that make the equivalence Sch ≃ Nom
possible, and how Model 1 and Model 2 are instances of the same

structure across this equivalence; Theorem 4.35 relies crucially on

identifying analogous properties in the probabilistic setting.

2.1 Model 1 in the Schanuel topos
In this section we describe how Model 1 of Section 2 naturally lives

in the Schanuel topos Sch. The benefit of this is that it makes the

invariants maintained by ⟦−⟧(−)
1

explicit: the category Sch is such

that all constructions that make categorical sense — i.e., are well-

defined as objects and morphisms of Sch— are forced to preserve all

invariants. The invariants in this case are the following principles

one intuitively expects to hold when reasoning about stores:

• Extension: propositions should continue to hold when new lo-

cations are introduced (such as when declaring a local variable

or allocating a reference). More precisely, if 𝑠 ∈ ⟦Γ ⊢ 𝑃⟧𝐿
1
(𝛾) for

some 𝐿-shaped valuation 𝑠 and substitution 𝛾 : Γ → 𝐿, and if 𝐿

is a subset of some extended set of locations 𝐿′, then it should

hold that 𝑠 ∈ ⟦Γ ⊢ 𝑃⟧𝐿
′

1
(𝛾), where we have implicitly coerced 𝑠

into an 𝐿′-shaped valuation and 𝛾 into an 𝐿′-shaped substitution
Γ → 𝐿′ along the inclusion 𝐿 ⊆ 𝐿′. 2
• Renaming: propositions should be stable under renaming of lo-

cations. More precisely, if 𝑠 ∈ ⟦Γ ⊢ 𝑃⟧𝐿
1
(𝛾) for some 𝐿-shaped

valuation 𝑠 and substitution 𝛾 : Γ → 𝐿, and if 𝑓 is a bijective func-

tion 𝐿 → 𝐿′, then it should hold that 𝑠 ◦ 𝑓 −1 ∈ ⟦Γ ⊢ 𝑃⟧𝐿
′

1
(𝑓 ◦𝛾).

• Restriction: the truth of a proposition should not depend on any

unused locations. For example, suppose a proposition 𝑃 holds of

the {ℓ1, ℓ2}-shaped valuation {ℓ1 ↦→ 1}, which does not use the

location ℓ2. Then 𝑃 should also hold of {ℓ1 ↦→ 1} considered as

an {ℓ1}-shaped valuation.

As basic principles of store-based reasoning, it is crucial that these

invariants are preserved by the basic separation logic connectives:

if 𝑃 and 𝑄 satisfy Extension, Renaming, and Restriction, then their

2
This makes the separation logic affine rather than linear; we will restrict our attention

to affine separation logics in this paper, as Lilac is affine and our main goal is to obtain

models for it.

separating conjunction 𝑃 ∗𝑄 , separating implication 𝑃 −∗𝑄 , con-
junction 𝑃 ∧𝑄 , and implication 𝑃 → 𝑄 should as well.

A general strategy for preserving invariants like this is to work

with Set-valued functors out of a category 𝐶 capturing them. Such

functors are very well-behaved: in particular, many subcategories

of the functor category [𝐶op
; Set], called categories of sheaves on

𝐶 , are automatically cartesian closed, and can be used to quickly

obtain invariant-preserving interpretations of logical connectives.

Placing Model 1 into the Schanuel topos Sch is an instance of this

idea. The Schanuel topos is a particular subcategory of [𝐶op
; Set],

where 𝐶 is chosen so that functors 𝐶op → Set capture Extension
and Renaming, consisting only of functors that are atomic sheaves
in order to capture Restriction. We build up to this model in steps.

2.1.1 The base category𝐶 . Essentially, Extension says propositions
should be stable under subset-inclusions 𝐿 ⊆ 𝐿′ and Renaming says

they should be stable under bijections. These two invariants can be

packaged into a category of store shapes:

Definition 2.1. Let Shp be the category whose objects are finite

sets 𝐿 and whose morphisms from 𝐿 to 𝑀 are functions 𝑀 → 𝐿

definable by composing subset-inclusions and bijections.

Note the direction 𝑀 → 𝐿 is the reverse of what one might

expect; this is because we will consider contravariant functors on

Shp. Intuitively, there is a morphism𝑀 → 𝐿 if 𝐿 is a “smaller” shape

than𝑀 . Since every composite of subset-inclusions and bijections

is an injective function, and every injective function is bijective

onto its image, the category Shp has a simple abstract description:

Proposition 2.2. The category Shp is equal to Injop<𝜔 , where Inj<𝜔
is the category of injective functions between finite sets.

With Shp in hand, functors Shpop → Set (equivalently, functors
Inj<𝜔 → Set) model Extension- and Renaming-invariant concepts.

In particular, there is a functor modelling stores:

Definition 2.3 (Store functor). The store functor S : Shpop → Set is
a functor that sends a finite set 𝐿 to the set of all 𝐿-shaped valuations

and a Inj<𝜔 -morphism 𝑖 : 𝐿 ↩→ 𝑀 to a function coercing S(𝑀)
into S(𝐿) defined by S(𝑖) (𝐿, 𝑠) = (𝑀, 𝑠′), where 𝑠′ is the valuation
𝑀 ⇀ Z defined by 𝑠′ (𝑚) = 𝑠 (𝑙) iff𝑚 = 𝑖 (𝑙) for some 𝑙 in 𝐿.

The action of S on Shp-morphisms captures the operations that

we expect to be invariant under: if 𝑖 is a subset inclusion 𝐿 ⊆ 𝐿′,
then S(𝑖) coerces 𝐿-shaped stores into 𝐿′-shaped stores as in the

description of Extension, and if 𝑓 is a bijective function 𝐿 → 𝐿′,
then S(𝑓 ) sends an 𝐿-shaped valuation 𝑠 to an 𝐿′-shaped valuation

𝑠 ◦ 𝑓 −1 as in the description of Renaming.

2.1.2 Using sheaves to capture Restriction. Recall the example used

to illustrate Restriction: if a proposition holds of the {ℓ1, ℓ2}-shaped
valuation {ℓ1 ↦→ 1}, then it should also hold of {ℓ1 ↦→ 1} considered
as an {ℓ1}-shaped valuation. We say that {ℓ1 ↦→ 1} ∈ S{ℓ1, ℓ2}
restricts to {ℓ1 ↦→ 1} ∈ S{ℓ1} along 𝑖 , where 𝑖 is the subset-inclusion
{ℓ1} ⊆ {ℓ1, ℓ2}. This is an instance of a more general property

satisfied by the functor S:

Proposition 2.4. Let 𝑖 : 𝐿 ↩→ 𝑀 be an injective function be-

tween finite sets 𝐿 and 𝑀 , and 𝑠 ∈ S(𝑀) an 𝑀-shaped valuation.

If dom(𝑠) ⊆ im(𝑖), then there exists a unique 𝐿-shaped valuation

𝑠′ ∈ S(𝐿), the restriction of 𝑠 along 𝑖 , such that S(𝑖) (𝑠′) = 𝑠 .
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Proposition 2.4 can be expressed more abstractly:

Definition 2.5. Let 𝐹 be a functor Shpop → Set and 𝑖 : 𝐿 ↩→ 𝑀

a Inj<𝜔 -morphism. An element 𝑦 of 𝐹 (𝑀) is restrictable along 𝑖 if
for all Inj<𝜔 -objects 𝑁 and Inj<𝜔 -morphisms 𝑗, 𝑘 : 𝑀 → 𝑁 with

𝑗 ◦ 𝑖 = 𝑘 ◦ 𝑖 it holds that 𝐹 ( 𝑗) (𝑦) = 𝐹 (𝑘) (𝑦).

Definition 2.6. A functor 𝐹 : Shpop → Set has a restriction opera-
tion if for all Inj<𝜔 -morphisms 𝑖 : 𝐿 ↩→ 𝑀 and elements 𝑦 of 𝐹 (𝑀)
that are restrictable along 𝑖 , there exists a unique 𝑥 ∈ 𝐹 (𝐿), called
the restriction of 𝑦 along 𝑖 , such that 𝑦 = 𝐹 (𝑖) (𝑥).

With these definitions in hand, one can show Proposition 2.4

is equivalent to S having a restriction operation. Functors with a

restriction operation have a special name: they are called atomic
sheaves on Shp [30, Lemma III.4.2]. The Schanuel topos Sch is the

full subcategory of [Shpop; Set] consisting of atomic sheaves.

In these new terms, Proposition 2.4 says S is an atomic sheaf

on Shp, and so an object of Sch. Just as S captures the concept of

stores as shape-indexed valuations, there are other atomic sheaves

for each of the other concepts used to define Model 1:

Proposition 2.7. The following are objects of Sch:

• The constant functor Prop sending every object of Shp to the set

{⊤,⊥} and every morphism of Shp to the identity function.

• The functor Loc of locations, defined by Loc(𝐿) = 𝐿 on objects

of Shp and Loc(𝑖 : 𝐿 ↩→ 𝐿′) (𝑙 : 𝐿) = 𝑖 (𝑙) on Inj<𝜔 -morphisms

𝑖 : 𝐿 ↩→ 𝐿′.
• The functor Loc

Γ
of Γ-substitutions, which maps objects 𝐿 to the

set of all substitutions 𝐿 → Γ, and action on Inj<𝜔 -morphisms

inherited pointwise from Loc.

With these sheaves in hand, one can show Model 1 lives in Sch:

Proposition 2.8. If Γ ⊢ 𝑃 then the 𝐿-indexed family of functions(
⟦Γ ⊢ 𝑃⟧𝐿

1
: (Γ → 𝐿) → P(𝐿 ⇀ Z)

)
𝐿∈Shp

is natural in 𝐿, so defines a morphism Loc
Γ → Prop

S
in Sch, where

Prop
S
is the exponential guaranteed to exist because Sch is carte-

sian closed by virtue of being a category of sheaves. Moreover,

every morphism of this type satisfies Extension, Renaming, and

Restriction.

2.2 Model 2 in nominal sets
We now turn to the other side of the equivalence given by Fact 1.1:

the category of nominal sets Nom, and how it naturally houses

Model 2 of Section 2, in which separation is defined via union of

finite partial functions on N.
Just as Sch is a category capturing the invariants implicitly main-

tained by Model 1, Nom is a category capturing the invariants

implicitly maintained by Model 2. In this case, the invariants are:

• Permutation: propositions should be stable under permuting lo-

cations. If 𝑠 ∈ ⟦Γ ⊢ 𝑃⟧
2
(𝛾) for some store 𝑠 : N

fin−−⇀ Z and

substitution 𝛾 : Γ → N, and 𝜋 : N → N is a permutation of

finitely-many natural numbers, then it should hold that 𝑠 ◦ 𝜋 ∈
⟦Γ ⊢ 𝑃⟧

2
(𝜋−1 ◦ 𝛾).

• Finiteness: more subtly, stores and substitutions can only mention

finitely-many locations 𝑛 ∈ N; this models the fact that physical

stores are necessarily finite, and ensures that one always has the

ability to allocate fresh locations.

To capture Permutation, the objects of Nom are sets equipped

with an action by a group of permutations to be invariant under.

Specifically, let 𝑆𝜔 be the group of permutations of finitely-many

natural numbers: elements of 𝑆𝜔 are bijective functions 𝜋 : N→ N
such that there exists some 𝑛 ∈ N with 𝜋 (𝑚) = 𝑚 for all𝑚 ≥ 𝑛.
An 𝑆𝜔 -set is a set 𝑋 equipped with a right action by 𝑆𝜔 : a function

(·) : 𝑋 ×𝑆𝜔 → 𝑋 satisfying 𝑥 · 1 = 𝑥 and 𝑥 · (𝜋𝜎) = (𝑥 ·𝜋) ·𝜎 for all

𝑥 ∈ 𝑋 and 𝜋, 𝜎 ∈ 𝑆𝜔 . There is an 𝑆𝜔 -set S of stores, whose group
action says what it means to permute the locations in a store:

3

Definition 2.9. Let S be the 𝑆𝜔 -set of stores 𝑠 : N
fin−−⇀Zwith action

𝑠 · 𝜋 = 𝑠 ◦ 𝜋 .
A morphism of 𝑆𝜔 -sets (𝑋, ·𝑋 ) → (𝑌, ·𝑌 ) is an equivariant func-

tion: a function 𝑓 : 𝑋 → 𝑌 satisfying 𝑓 (𝑥 ·𝑋 𝜋) = 𝑓 (𝑥) ·𝑌 𝜋 for

all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and 𝜋 ∈ 𝑆𝜔 . This captures invariance under
Permutation: 𝑆𝜔 -morphisms S→ Prop, where Prop is the 𝑆𝜔 -set

{⊤,⊥} with trivial action 𝑝 · 𝜋 = 𝑝 , are the permutation-invariant

predicates on stores.

To capture Finiteness, the category Nom is a full subcategory of

the category of 𝑆𝜔 -sets consisting of those 𝑆𝜔 -sets (𝑋, ·𝑋 ) in which

every 𝑥 ∈ 𝑋 only uses finitely many locations. The concept of

“using” a location is made precise by looking at stabilizer subgroups:

if 𝑥 ·𝜋 = 𝑥 (i.e., 𝜋 is in the stabilizer of 𝑥 ) then 𝑥 can only “use” those

locations fixed by 𝜋 . An element 𝑥 uses finitely many locations if

its stabilizer is open for a suitable topology:

Definition 2.10 (Topology on 𝑆𝜔 ). A subset 𝑈 of 𝑆𝜔 is open if

for every 𝜋 in 𝑈 there exists a finite subset 𝐴 of N such that 𝜋 ∈
Fix𝐴 ⊆ 𝑈 , where Fix𝐴 is the subgroup of 𝑆𝜔 -permutations 𝜋 that

fix every element of 𝐴; i.e., 𝜋 (𝑎) = 𝑎 for all 𝑎 in 𝐴.
Intuitively, a stabilizer subgroup Stab𝑥 is open if every 𝜋 stabiliz-

ing 𝑥 does so for some “finite reason”𝐴: there is some subset𝐴 fixed

by 𝜋 such that any other permutation 𝜋 ′ fixing 𝐴 also stabilizes 𝑥 .

Nominal sets are 𝑆𝜔 -sets with open stabilizers [37, §6.2]:

Definition 2.11. A nominal set is a 𝑆𝜔 -set (𝑋, ·) such that for every
𝑥 in 𝑋 the stabilizer subgroup Stab𝑥 is open. Nom is the category

of nominal sets and equivariant functions.

For example, S is a nominal set: if 𝑠 is a store with 𝑠◦𝜋 = 𝑠 , then 𝜋

fixes the finite set dom(𝑠), and moreover every permutation fixing

dom(𝑠) fixes 𝑠 , so dom(𝑠) ⊆ Stab𝑥 and Stab 𝑠 is open. There are

nominal sets capturing each of the other concepts used in Model 2:

Proposition 2.12. The following are objects of Nom:

• The 𝑆𝜔 -set Prop of propositions

• The 𝑆𝜔 -set Loc of locations N with action 𝑥 · 𝜋 = 𝜋−1 (𝑥).
• The 𝑆𝜔 -set Loc

Γ
of Γ-substitutions𝛾 : Γ → Nwith action defined

by 𝛾 · 𝜋 = 𝜋−1 ◦ 𝛾 .
With these in hand, one can show Model 2 lives in Nom:

Proposition 2.13. If Γ ⊢ 𝑃 then the function ⟦Γ ⊢ 𝑃⟧
2
is a mor-

phism Loc

Γ → Prop

S

in Nom, and every morphism of this type

satisfies Permutation and Finiteness.

3
In general, we will overline objects of Nom to distinguish them from their Sch-

counterparts.
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2.3 The equivalence
This section sketches the classic equivalence Sch ≃ Nom and how

Models 1 and 2 correspond across it. We will not be concerned

so much with the details of this particular equivalence, but rather

with highlighting the key properties of Sch and Nom that make it

possible — Theorem 4.35 relies on identifying analogous properties

in the probabilistic setting.

In Section 2 we sketched the correspondence between Model 1

and Model 2, based on the idea that every store shape 𝐿 can be

encoded as a finite set of natural numbers via a pair of functions

(enc𝐿, dec𝐿). This idea also forms the basis for the equivalence

Sch ≃ Nom. In the language of Section 2.1, every enc𝐿 encodes the

object 𝐿 of Shp as a subset im(enc𝐿) of N. This encoding extends
to morphisms of Shp: every Shp-morphism 𝑀 → 𝐿, equivalently

an injective function 𝑓 : 𝐿 ↩→ 𝑀 , can be encoded as a permutation

𝜋 ∈ 𝑆𝜔 that sends im(enc𝐿) to im(enc𝑀 ). More precisely,

Proposition 2.14 (Homogeneity [38, L1.14]). Let 𝐿,𝑀 be finite

sets and enc𝐿 and enc𝑀 injective functions 𝐿 ↩→ N and 𝑀 ↩→ N.
For any injective function 𝑖 : 𝐿 ↩→ 𝑀 , there exists 𝜋 ∈ 𝑆𝜔 such that

𝜋 ◦ enc𝐿 = enc𝑀 ◦ 𝑖 , making the following square commute:

N N

𝐿 𝑀

𝜋

enc𝐿

𝑖

enc𝑀

Furthermore, the relationships between encoded store shapes

im(enc𝐿) are faithfully captured by relationships between sub-

groups of 𝑆𝜔 :

Proposition 2.15 (Correspondence). For any two store shapes 𝐿

and𝑀 , it holds that Fix(im(enc𝐿)) ⊆ Fix(im(enc𝑀 )) if and only if

im(enc𝐿) ⊇ im(enc𝑀 ).
Homogeneity and Correspondence together give the equivalence

Sch ≃ Nom. For details, see MacLane and Moerdijk [30, Theorem

III.9.2]. With this equivalence in hand, we are finally in a position

to make Fact 1.1 precise. Abbreviating Loc
Γ
as ⟦Γ⟧ and the ex-

ponential Prop
S
as Pred, Proposition 2.8 shows that the Hom-set

Sch(⟦Γ⟧, Pred) serves as a semantic domain for Model-1 interpre-

tations of TinySep propositions in context Γ. Analogously, Proposi-

tion 2.13 shows that Nom(⟦Γ⟧, Pred) serves as a semantic domain

for Model 2, where ⟦Γ⟧ is LocΓ and Pred the exponential Prop

S

.

The next proposition establishes that these semantic domains cor-

respond across Sch ≃ Nom:

Proposition 2.16. Across the equivalence Sch ≃ Nom, the sheaf

S corresponds to the nominal set S, Prop to Prop, Loc to Loc, ⟦Γ⟧
to ⟦Γ⟧, Pred to Pred, and Sch(⟦Γ⟧, Pred) to Nom(⟦Γ⟧, Pred).

It remains to show that Model 1 intepretations ⟦Γ ⊢ 𝑃⟧(−)
1

cor-

respond to their Model 2 counterparts ⟦Γ ⊢ 𝑃⟧
2
. This is straightfor-

ward when 𝑃 is True or 𝑥 ↦→ 𝑖; the interesting case is the separating

conjunction 𝑃1 ∗ 𝑃2. One could show ⟦𝑃1 ∗ 𝑃2⟧(−)
1

corresponds to

⟦𝑃1 ∗ 𝑃2⟧2 by unwinding definitions and showing, via a careful cal-

culation, that they correspond across the functor Sch→ Nom wit-

nessing the equivalence. But Fact 1.1 is far more general. The idea is

to use the internal language of Sch: as a category of sheaves, any con-

struction in higher-order logic can be interpreted in Sch [30, VI.7.1].

In this internal language, types denote sheaves and functions de-

note natural transformations, and Model 1’s separating conjunction

can be defined as ⟦Γ ⊢ 𝑃1 ∗ 𝑃2⟧(−)
1

= ⟦Γ ⊢ 𝑃1⟧(−)
1

⊛ ⟦Γ ⊢ 𝑃2⟧(−)
1

,

where⊛ is a special Sch-morphism denoting separating conjunction

in the internal language of Sch. The meaning of ⊛ can be described

by conveniently using the higher-order logic of Sch:

(⊛) : Pred⟦Γ⟧ × Pred⟦Γ⟧ → Pred
⟦Γ⟧

(𝑓1 ⊛ 𝑓2) (𝛾 : ⟦Γ⟧)(𝑠 : S) =
( ∃ 𝑠1 𝑠2 : S. 𝑠1 • 𝑠2 defined ∧
𝑠1 • 𝑠2 ⊑ 𝑠 ∧ 𝑓1 𝛾 𝑠1 ∧ 𝑓2 𝛾 𝑠2

)
(1)

This definition is made of the following key ingredients:

• A symbol ⊑, which in the internal language looks like an order-

ing relation on stores, and externally denotes a suitable natural

transformation S × S→ Prop.

• A symbol •, which internally looks like a partial function com-

bining stores, and externally denotes a natural transformation

S
2

⊥ → S, where S
2

⊥ is a subobject 𝑖 : S2⊥ ↩→ S×S of the sheaf S×S
of pairs of stores carving out the domain on which • is defined.

The ordering ⊑ is the natural transformation (⊑) : S × S→ Prop

defined by (𝑠1 ⊑𝐿 𝑠2) = ⊤ if and only if 𝑠1 is a subvaluation of 𝑠2.

The combining operation • is a natural transformation • : S2⊥ → S.

Its domain S
2

⊥ is a sheaf defined in terms of the coproduct of finite

sets. Each S
2

⊥ (𝐿) is a set consisting of pairs of 𝐿-shaped valuations

that “factor through” a coproduct 𝐿1+𝐿2 along some 𝑖 : 𝐿1+𝐿2 ↩→ 𝐿:

S
2

⊥ (𝐿) =
{ (S(𝑖 ◦ inl) (𝑠1), S(𝑖 ◦ inr) (𝑠2))
| 𝐿1, 𝐿2 ∈ Shp, 𝑠1 ∈ S(𝐿1), 𝑠2 ∈ S(𝐿2), 𝑖 : 𝐿1 + 𝐿2 ↩→ 𝐿 }

The morphism • sends each pair (S(𝑖 ◦ inl) (𝑠1), S(𝑖 ◦ inr) (𝑠2)) of
separated stores to the combined store S(𝑖) [𝑠1, 𝑠2], where the val-
uation [𝑠1, 𝑠2] of type 𝐿1 + 𝐿2 → Z is the unique one defined by

[𝑠1, 𝑠2] ◦ inl = 𝑠1 and [𝑠1, 𝑠2] ◦ inr = 𝑠2. Each S
2

⊥ (𝐿) is a subset of
(S× S) (𝐿), and collecting the canonical subset-inclusions into an 𝐿-
indexed family gives a monic natural transformation 𝑖 : S2⊥ ↩→ S×S.

In the internal language, • looks like a partial function that is asso-
ciative and commutative and monotone with respect to ⊑, with unit
the natural transformation emp : 1→ S sending every store shape

𝐿 to the empty valuation on 𝐿. Together, the tuple (⊑, S2⊥, 𝑖, •, emp)
packages up the ingredients needed to model separation logic in

Sch into a resource monoid internal to Sch:

Definition 2.17. A resource monoid [21] is a poset (𝑅, ⊑) with a

least element ⊥ and a monotone partial function (·) : 𝑅 × 𝑅 ⇀ 𝑅

such that (𝑅, ·,⊥) forms a partial commutative monoid.
4

We can similarly construct a resource monoid in Nom. There is

an equivariant function (⊑) : S × S→ Prop sending a pair (𝑠1, 𝑠2)
of finite partial functions on N to ⊤ if and only if 𝑠1 ⊆ 𝑠2, with least

element emp the empty finite partial function. There is a nominal

set S

2

⊥ of separated stores: the set

{(𝑠1, 𝑠2) | 𝑠1, 𝑠2 ∈ S, dom(𝑠1) ∩ dom(𝑠2) = ∅}
of pairs of stores with disjoint domain, and pointwise action. Both

the canonical inclusion 𝑖 : S

2

⊥ ↩→ S × S and the function (•) :
S

2

⊥ → S sending a pair (𝑠1, 𝑠2) of disjoint stores to their union

4
In this paper we are concerned with affine models of separation logic, and so consider

an affine variant of the resource monoids defined in Galmiche et al. [21]. Our definition

is closest in spirit to the affine PDMs sketched there.
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𝑠1 ⊎ 𝑠2 are equivariant, hence morphisms in Nom. Finally, • is

monotone in 𝑖 and has unit emp so (⊑, S2⊥, 𝑖, •, emp) forms a resource

monoid internal to Nom, and reinterpreting Eq. (1) inside Nom
with (⊑, S2⊥, 𝑖, •, emp) in place of (⊑, S2⊥, 𝑖, •, emp) yields Model 2’s

separating conjunction. The following proposition, connecting the

two resource monoids, makes Fact 1.1 precise:

Proposition 2.18. The resource monoid (⊑, S2⊥, 𝑖, •, emp) corre-
sponds to (⊑, S2⊥, 𝑖, •, emp) across the equivalence Sch ≃ Nom.

We are at last ready to appreciate the full power of this fact. First,

it shows ⟦𝑃1 ∗ 𝑃2⟧(−)
1

corresponds to ⟦𝑃1 ∗ 𝑃2⟧2: both arise from

the same internal-language definition, up to the replacement of

types and function symbols following Propositions 2.16 and 2.18.

Next, since the separating implication −∗ and all intuitionistic con-

nectives can be defined similarly using the internal language, they

must correspond as well; this extends the equivalence of Models

1 and 2 from TinySep to all standard separation logic connectives.

More generally, Fact 1.1 says that any construction in higher-order

logic that only uses the types and functions of Propositions 2.16

and 2.18 corresponds across the equivalence Sch ≃ Nom.

3 THE DISCRETE CASE
Theorem 4.35 imports quite a bit of measure theory in order to

support continuous probability. To describe the key ideas, we tem-

porarily set the measure theory aside by first presenting in detail a

version of Theorem 4.35 adapted to discrete probability.

The structure of this section is completely analogous to Section 2.

We first present two different probabilistic separation logics: one

where separation is defined via the product of sample spaces, and

a second based on Li et al. [29] where separation is defined via

independent combination. Then, we will show how separation-as-

product naturally lives in a category EMS
d
of discrete enhanced

measurable sheaves analogous to the Schanuel topos, and how

separation-as-independent-combination naturally lives in a cat-

egory Set≪
d

of discrete absolutely continuous sets. Finally, we show
these two categories equivalent, and that the two notions of separa-

tion correspond across this equivalence, giving an analog of Fact 1.1

suitable for discrete probability.

In Section 2 we considered a tiny separation logic TinySep for

integer-valued stores. Analogously, we consider here a logic for

integer-valued random variables:

𝑃,𝑄 ::= 𝑋 ∼ 𝜇 | True | 𝑃 ∗𝑄. (TinyProbSep)

The proposition 𝑋 ∼ 𝜇 asserts that the logical variable 𝑋 stands for

an integer-valued random variable with probability mass function

𝜇 : Z→ [0, 1]. As in TinySep, a proposition is well-formed in con-

text Γ, written Γ ⊢ 𝑃 , if Γ contains the variables used by 𝑃 . We shall

establish the equivalence of two different models for TinyProb-

Sep. In both cases, the basic idea is that a proposition denotes a

predicate on probability spaces and logical variables denote random
variables, just as a proposition in ordinary separation logic denotes

a predicate on stores with logical variables denoting heap locations.

The difference is in how these objects are represented:

Model 1: separation as product. In this model, a probability space
consists of two components: (1) a nonempty countable set Ω called

the sample space, and (2) a probability space P on Ω consisting

of a pair (F , 𝜇) with F a 𝜎-algebra on Ω and 𝜇 : F → [0, 1] a
probability measure. A random variable on Ω is a function Ω → Z.
We will write P(Ω) and RV(Ω) for the set of probability spaces and
random variables on Ω respectively.

The meaning of a proposition depends on the underlying sample

space: Γ ⊢ 𝑃 denotes a map ⟦Γ ⊢ 𝑃⟧Ω
1
: (Γ → RV(Ω)) → 𝒫(P(Ω))

associating each random substitution 𝐺 : Γ → RV(Ω) to the set

⟦Γ ⊢ 𝑃⟧Ω
1
(𝐺) of probability spaces on Ω satisfying 𝑃 .

Under this interpretation, we have P ∈ ⟦True⟧Ω
1
(𝐺) for all

probability spaces P on Ω, and (F , 𝜇) ∈ ⟦𝑋 ∼ 𝜈⟧Ω
1
(𝐺) if and only

if 𝐺 (𝑋 ) is F -measurable and has distribution 𝜈 ; i.e., for all 𝑖 ∈ Z
it holds that 𝐺 (𝑋 )−1 (𝑖) ∈ F and 𝜇 (𝐺 (𝑋 )−1 (𝑖)) = 𝜈 (𝑖). Separating
conjunction is defined in terms of products of sample spaces. To

make this precise, we need the following definitions:

Definition 3.1 (Pullback probability space). Let 𝑋 be a nonempty

countable set, (𝑌,G, 𝜈) a countable probability space, and 𝑓 : 𝑋 ↠
𝑌 a surjective function. The pullback of (G, 𝜈) along 𝑓 , written
𝑓 −1 (G, 𝜈), is the probability space (F , 𝜇) on 𝑋 defined by F =

{𝑓 −1 (𝐺) | 𝐺 ∈ G} and 𝜇 (𝑓 −1 (𝐺)) = 𝜈 (𝐺). Note 𝜇 is well-defined
because 𝑓 surjective, so 𝑓 −1 injective.

Definition 3.2 (Subspace). Given two probability spaces (F , 𝜇)
and (G, 𝜈) on Ω, say (F , 𝜇) is a subspace of (G, 𝜈), written (F , 𝜇) ⊑
(G, 𝜈), if F ⊆ G and 𝜈 |F = 𝜇.

With these definitions, the separating conjunction 𝑃1 ∗ 𝑃2 holds
of a probability space P on Ω if and only if there exist probability

spaces P1 on Ω1 and P2 on Ω2 and a surjective function 𝑝 : Ω ↠
Ω1 × Ω2 such that P1 satisfies 𝑃1 and P2 satisfies 𝑃2 and 𝑝−1 (P1 ⊗
P2) is a subspace of P, where P1 ⊗ P2 is the product probability
space on Ω1 × Ω2 whose measure is the product measure induced

by the measures of P1 on Ω1 and P2 on Ω2 in the usual way.

For example, let Ω be the sample space {0, 1}3 of points (𝑥,𝑦, 𝑧) ∈
R3

with 𝑥,𝑦, 𝑧 all either 0 or 1. Let 𝐺 be the random substitution

of type {𝑋,𝑌 } → RV(Ω) where 𝐺 (𝑋 ) is the random variable

(𝑥,𝑦, 𝑧) ↦→ 𝑥 and 𝐺 (𝑌 ) is the random variable (𝑥,𝑦, 𝑧) ↦→ 𝑦. Let

(F , 𝜇) be the uniform probability space on Ω, assigning each tuple

(𝑥,𝑦, 𝑧) probability 1/8. It holds that
(F , 𝜇) ∈ ⟦(𝑋 ∼ Ber(1/2)) ∗ (𝑌 ∼ Ber(1/2))⟧Ω

1
(𝐺),

witnessed by setting 𝑝 to the projection Ω ↠ {0, 1} × {0, 1} defined
by 𝑝 (𝑥,𝑦, 𝑧) = (𝑥,𝑦).

Model 2: separation as independent combination. In this model,

one fixes upfront a single measurable space to serve as a “universal

sample space” into which all discrete sample spaces can be embed-

ded. Any standard Borel space will do; we choose the interval [0, 1].
The idea is that, just as every finite store shape 𝐿 can be encoded as

a finite subset of N via an injective function enc𝐿 : 𝐿 ↩→ N, every
nonempty countable sample space Ω can be encoded as a countable

partition of the interval via a random variable decΩ : [0, 1] → Ω
with each dec

−1
Ω (𝜔) nonnegligible, visualized as:

0 11/3 2/3

𝜔1 𝜔2 𝜔3

[0, 1]
decΩ

Ω

(IntervalEncode)
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This illustration gives one possible encoding of the three-point

space {𝜔1, 𝜔2, 𝜔3} as the partition {[0, 1/3), [1/3, 2/3], (2/3, 1]},
generated by the random variable decΩ : [0, 1] → {𝜔1, 𝜔2, 𝜔3}
taking value 𝜔1 on [0, 1/3), 𝜔2 on [1/3, 2/3], and 𝜔3 on (2/3, 1].

With this fixed sample space in hand, the random variables Ω →
Z of Model 1 can be encoded as Lebesgue-measurable functions

[0, 1] → Z, quotiented by almost-everywhere equality. We will

write RV for the set of integer-valued random variables.

In order for our encoding of sample spaces as partitions gener-

ated by random variables to respect almost-everywhere equality of

random variables, we must consider such partitions up to negligi-

bility: for example, the partitions {[0, 1/3), [1/3, 2/3], (2/3, 1]} and
{[0, 1/3], (1/3, 2/3), [2/3, 1]} should be considered equivalent, as

they arise from almost-everywhere-equal random variables. This

idea motivates the following definition.

Definition 3.3. A countable measurable partition of [0, 1] is a count-
able partition {𝐴𝑖 }𝑖∈𝐼 with each𝐴𝑖 a Lebesgue-measurable and non-

negligible subset of [0, 1], quotiented by almost-everywhere equal-

ity: two partitions are almost-everywhere equal, written {𝐴𝑖 }𝑖∈𝐼 =a.s.
{𝐵 𝑗 } 𝑗∈ 𝐽 , if for all 𝑖 in 𝐼 there exists a unique 𝑗 in 𝐽 such that the

symmetric difference 𝐴𝑖△𝐵 𝑗 is Lebesgue-negligible.

Just as any 𝐿-shaped valuation can be encoded as a finite partial

function on N, any discrete probability space can be encoded as a

countable measurable partition equipped with a measure:

Definition 3.4. A countable measured partition of [0, 1] is a pair
({𝐴𝑖 }𝑖∈𝐼 , 𝜇) with {𝐴𝑖 }𝑖∈𝐼 a countable measurable partition of [0, 1]
and 𝜇 : {𝐴𝑖 }𝑖∈𝐼 → [0, 1] a function satisfying

∑
𝑖 𝜇 (𝐴𝑖 ) = 1. Two

such partitions are equal if their measurable partitions are equal

and their measures agree. Let P be the set of countable measured

partitions of [0, 1].

Now that we have a way of encoding discrete probability spaces

as countable measured partitions of [0, 1], we can define a model

of TinyProbSep purely in terms of countable measured partitions.

A proposition Γ ⊢ 𝑃 denotes a map ⟦Γ ⊢ 𝑃⟧
2
: (Γ → RV) →

𝒫(P) assigning each random substitution 𝐺 : Γ → RV the set

of countable measured partitions satisfying 𝑃 . The interpretations

of True and 𝑋 ∼ 𝜇 are as in Model 1: P ∈ ⟦True⟧
2
(𝐺) for any

countable measured partition P, and ({𝐴𝑖 }𝑖∈𝐼 , 𝜇) ∈ ⟦𝑋 ∼ 𝜈⟧2 (𝐺)
if and only if for all 𝑘 ∈ Z there exists 𝑖 ∈ 𝐼 with 𝐺 (𝑋 )−1 (𝑘)△𝐴𝑖
negligible and 𝜇 (𝐺 (𝑋 )−1 (𝑘)) = 𝜈 (𝑘). Separating conjunction is

defined via independent combination, following Li et al. [29]:

Definition 3.5 (Discrete independent combination). A countable

measured partition (A, 𝜇) is an independent combination of (A1, 𝜇1)
and (A2, 𝜇2) if (1) the partition A is generated by the intersec-

tions 𝐴1 ∩ 𝐴2 for 𝐴1 in A1 and 𝐴2 in A2 and (2) 𝜇 (𝐴1 ∩ 𝐴2) =
𝜇1 (𝐴1)𝜇2 (𝐴2) for all 𝐴1 in A1 and 𝐴2 in A2. Independent combi-

nations are unique if they exist [29, Lemma 2.3], defining a partial

function • with (A1, 𝜇1) • (A2, 𝜇2) = (A, 𝜇) if and only if (A, 𝜇)
is the independent combination of (A1, 𝜇1) and (A2, 𝜇2).

Definition 3.6 (Ordering on partitions). For two countable mea-

sured partitions (A, 𝜇) and (B, 𝜈), let ⊑ be the ordering relation

defined by (A, 𝜇) ⊑ (B, 𝜈) if and only if the partition A is coarser

than B and 𝜈 restricts to 𝜇.

These definitions give an interpretation of separating conjunc-

tion: a countable measured partition (A, 𝜇) on [0, 1] satisfies 𝑃1 ∗𝑃2
with random substitution𝐺 , written (A, 𝜇) ∈ ⟦𝑃1 ∗ 𝑃2⟧2 (𝐺), if and
only if there exist (A1, 𝜇1) and (A2, 𝜇2) independently combinable

with (A1, 𝜇1) • (A2, 𝜇2) ⊑ (A, 𝜇) such that (A1, 𝜇1) is in ⟦𝑃1⟧2 (𝐺)
and (A2, 𝜇2) is in ⟦𝑃2⟧2 (𝐺).

Relating the two models. We will show that Model 1 and Model 2

are equivalent. As shown in IntervalEncode, every nonempty

countable sample space Ω can be encoded as a countable measured

partition on [0, 1] via a suitable random variable decΩ : [0, 1] →
Ω. Choosing a decΩ for every Ω allows translating Model 1 into

Model 2: a Model 1 random variable 𝑋 ∈ RV(Ω) corresponds to a

Model 2 random variable𝑋 ◦decΩ ∈ RV, and probability spaces can
be translated similarly. To extend this into an equivalence analogous

to Fact 1.1, we repeat the recipe of Section 2: we will place Models 1

and 2 into suitable categories, show the categories equivalent, and

show that the models correspond across this equivalence.

3.1 Discrete enhanced measurable sheaves
In Section 2.1 we saw how the Schanuel topos Sch captured the

invariants maintained by Model 1 of TinySep. In this section we

describe analogously how a category of discrete enhanced measur-
able sheaves, written EMS

d
, captures the invariants maintained by

Model 1 of TinyProbSep. Whereas the invariants of Section 2.1

were about extensions and restrictions of the store shape 𝐿, the

invariants in our probabilistic setting are about extensions and re-

strictions of the sample space Ω, as observed by Simpson [46, 47]:

• Extension: propositions that hold in sample space Ω should con-

tinue to hold when Ω is extended to a larger sample space Ω′

via a surjective function 𝑝 : Ω′ ↠ Ω. More precisely, if (F , 𝜇) ∈
⟦Γ ⊢ 𝑃⟧Ω

1
(𝐺) for some probability space (F , 𝜇) on Ω and ran-

dom substitution 𝐺 : Γ → RV(Ω), then it should hold that

𝑝−1 (F , 𝜇) ∈ ⟦Γ ⊢ 𝑃⟧Ω
′

1
(𝐺 · 𝑝), where𝐺 · 𝑝 is the random substi-

tution (𝐺 · 𝑝) (𝑋 ) = 𝐺 (𝑋 ) ◦ 𝑝 .5
• Restriction: the truth of a proposition should not depend on any

unused samples. For example, let Ω be an arbitrary sample space.

Suppose 𝐺 : Γ → RV(Ω) sends every 𝑋 in Γ to the constant

random variable 0, so 𝐺 (𝑋 ) (𝜔) = 0 for all 𝜔 , and let (F , 𝜇) be
the minimal probability space on Ω where F is the minimal

𝜎-algebra {∅,Ω} and 𝜇 the minimal probability measure with

𝜇 (∅) = 0 and 𝜇 (Ω) = 1. Both 𝐺 and (F , 𝜇) don’t use any of the

samples in Ω: every random variable 𝐺 (𝑋 ) is a deterministic

value, and 𝜇 only assigns probabilities to the deterministic events

∅ and Ω. Restriction says that if a proposition 𝑃 holds in this

situation, then it should hold of the one-point probability space

on the one-point set with substitution sending every 𝑋 in Γ to

the constant random variable 0.

To capture these invariants, we replay the construction of the

Schanuel topos: whereas the Schanuel topos is a category of atomic

sheaves on the category Shp of store shapes, EMS
d
is a category of

atomic sheaves on a category of discrete sample spaces.

5
Note that this rolls the two invariants Extension and Renaming of Section 2.1 into

one: it captures invariance under permutations of the underlying sample space in the

case where 𝑝 is a bijection.

https://johnm.li/lilac.pdf#page=11
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First, we fix a base category capturing Extension: the category

Surj≤𝜔 of nonempty countable sets and surjective functions. The

idea is that an object Ω of Surj≤𝜔 is a countable sample space, and

a morphism 𝑝 : Ω′ ↠ Ω extends a sample space Ω to a larger

space Ω′ in which every sample 𝜔 in Ω is expanded to a set of

samples 𝑝−1 (𝜔) ⊆ Ω′; surjectivity of 𝑝 ensures that every 𝑝−1 (𝜔)
is nonempty, so 𝑝 never deletes any samples in Ω.

Functors Surjop≤𝜔 → Set model sample-space-dependent con-

cepts. In particular, there is a functor modelling probability spaces:

For a Surj≤𝜔 -morphism 𝑝 : Ω′ ↠ Ω, setting P(𝑝) to the function
P(Ω) → P(Ω′) that sends a probability space P on Ω to its pullback

𝑝−1P makes P a functor Surjop≤𝜔 → Set.
Next, we capture Restriction by cutting the functor category

[Surjop≤𝜔 ; Set] down to a full subcategory of atomic sheaves. The

notion of atomic sheaf is given by the notion of atomic topology,
which exists for a given category if and only if the following Ore
property holds [30, p.115]:

Definition 3.7. A category 𝐶 has the right Ore property if for all

𝑋
𝑓
−→ 𝑍

𝑔
←− 𝑌 there exists 𝑋

ℎ←−𝑊 𝑘−→ 𝑌 such that 𝑓 ℎ = 𝑔𝑘 .

That Surj≤𝜔 satisfies this condition can be straightforwardly

verified: any cospan can be completed to a commutative square by

taking a pullback in Set. Thus the notion of atomic sheaf makes

sense for Surj≤𝜔 , a functor is an atomic sheaf if and only if it has a

restriction operation in the sense of Definition 2.6, and the following

definition makes sense:

Definition 3.8. Let EMS
d
be the full subcategory of the category

[Surjop≤𝜔 ; Set] consisting of those functors that are atomic sheaves.

Just as P(Ω) models the concept of probability spaces on Ω,
there are other atomic sheaves corresponding to each of the other

concepts used to define Model 1:

Proposition 3.9. The following are objects of EMS
d
:

• The constant functor Prop of propositions sending every object

of Surj≤𝜔 to the set {⊤,⊥} and every morphism of Surj≤𝜔 to

the identity function.

• The functor RV of random variables, with action on morphisms

defined by RV(𝑝 : Ω′ ↠ Ω) (𝑋 : RV(Ω)) = (𝑋 ◦ 𝑝 : RV(Ω′)).
• The functor RV

Γ
of Γ-substitutions with RV

Γ (Ω) = Γ → RV(Ω)
and action on morphisms defined by lifting RV pointwise.

With these sheaves in hand, one can show Model 1 lives in EMS
d
:

Proposition 3.10. If Γ ⊢ 𝑃 then the Ω-indexed family of functions(
⟦Γ ⊢ 𝑃⟧Ω

1
: (Γ → RV(Ω)) → P(P(Ω))

)
Ω∈Surj≤𝜔

is natural in Ω, so defines a morphism RV
Γ → Prop

P
in EMS

d
, and

every morphism of this type satisfies Extension and Restriction.

3.2 Discrete absolutely continuous sets
We now turn to Model 2 of TinyProbSep described in Section 3.

Just as Model 2 of TinySep naturally lives in the category Nom of

nominal sets, Model 2 of TinyProbSep naturally lives in a category

Set≪
d

of discrete absolutely continuous sets. Nom captures two in-

variants held by Model 2 of TinySep: Permutation and Finiteness.

Model 2 of TinyProbSep maintains analogous invariants:

• Permutation: propositions should be stable under permuting the

sample space [0, 1]. More precisely, if (A, 𝜇) ∈ ⟦Γ ⊢ 𝑃⟧
2
(𝐺) for

some countable measured partition (A, 𝜇) and random substi-

tution 𝐺 : Γ → RV, and if 𝜋 : [0, 1] → [0, 1] is a measurable

bijection, then it should hold that (A, 𝜇) · 𝜋 ∈ ⟦Γ ⊢ 𝑃⟧
2
(𝐺 · 𝜋),

where (A, 𝜇) · 𝜋 and 𝐺 · 𝜋 are the results of the permutation 𝜋

acting on (A, 𝜇) and 𝐺 .
• Sparsity: more subtly, the countable measured partitions (A, 𝜇)
represent countable probability spaces only. This ensures (A, 𝜇)
always leaves “enough room” in [0, 1] for “fresh randomness”: for

any other discrete probability space, there exists an encoding of

it as a countable measured partition (B, 𝜈) such that the discrete

independent combination (A, 𝜇) • (B, 𝜈) is defined.
To capture Permutation, the objects of Set≪

d
are sets equipped with

an action by a group of measurable automorphisms. Specifically,

let Aut[0, 1] be the group of measurable maps 𝜋 : [0, 1] → [0, 1]
that are bijective mod almost-everywhere equality. The category

of Aut[0, 1]-sets is the category whose objects are sets 𝑋 equipped

with a right action by Aut[0, 1] and whose morphisms are equi-

variant functions. Just as there is a 𝑆𝜔 -set S of stores, there is a

Aut[0, 1]-set P of countable measured partitions on [0, 1]:

Definition 3.11. Let P be the set of countable measured partitions

on [0, 1] with action ({𝐴𝑖 }𝑖∈𝐼 , 𝜇) · 𝜋 = ({𝜋−1 (𝐴𝑖 )}𝑖∈𝐼 , 𝜇 ◦ 𝜋).

Sparsity is captured by topologizing Aut[0, 1] via countable mea-

surable partitions, so a stabilizer Stab𝑥 is open if every 𝜋 stabilizing

𝑥 does so for a “countable reason”: there is a partition A fixed by

𝜋 such that any other permutation fixing A also stabilizes 𝑥 .

Definition 3.12 (Topology on Aut[0, 1]). A subset𝑈 of Aut[0, 1]
is open if for every 𝜋 ∈ 𝑈 , there exists a countable measurable

partition A of [0, 1] such that 𝜋 ∈ FixA ⊆ 𝑈 , where FixA is the

subgroup of Aut[0, 1] consisting of those permutations 𝜋 that fix

every element of A; i.e., 𝜋 (𝐴) =a.e. 𝐴 for all 𝐴 ∈ A.

Definition 3.13. A discrete absolutely continuous set is a Aut[0, 1]-
set whose elements have open stabilizers. Let Set≪

d
be the category

of discrete absolutely continuous sets and equivariant functions.

In addition to P, there are objects of Set≪
d

corresponding to each

of the other concepts used to define Model 2 of TinyProbSep:

Proposition 3.14. The following are objects of Set≪
d
:

• The Aut[0, 1]-set Prop = {⊤,⊥} with the trivial action.

• TheAut[0, 1]-set RV of random variables with action𝑋 ·𝜋 = 𝑋 ◦𝜋 .
• The Aut[0, 1]-set RVΓ

of random Γ-substitutions Γ → RV with

action defined by lifting RV pointwise.

With these in hand, one can show Model 2 lives in Set≪
d
:

Proposition 3.15. If Γ ⊢ 𝑃 then the function ⟦Γ ⊢ 𝑃⟧
2
is a mor-

phism RV

Γ → Prop
P
in Set≪

d
, and every morphism of this type

satisfies Permutation and Finiteness.

3.3 The equivalence of categories
Having placed Models 1 and 2 of TinyProbSep described in Sec-

tion 3 into the categories EMS
d
and Set≪

d
respectively, we describe

in this section how EMS
d
are Set≪

d
equivalent, giving an analog
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of Sch ≃ Nom for discrete probability. The key step is to establish

probabilistic analogs of Homogeneity and Correspondence:

Lemma 3.16 (Homogeneity). Let Ω,Ω′ be nonempty countable

sets and let decΩ and decΩ′ be measurable functions [0, 1] → Ω
and [0, 1] → Ω′ with dec

−1
Ω (𝜔) and dec

−1
Ω′ (𝜔

′) nonnegligible for
all 𝜔 ∈ Ω and 𝜔 ′ ∈ Ω′. For any surjective function 𝑓 : Ω′ ↠ Ω,
there exists 𝜋 ∈ Aut[0, 1] making the following square commute:

[0, 1] [0, 1]

Ω′ Ω

decΩ′

𝜋

decΩ

𝑝

This lemma is particularly important, so we give some intuition

about its proof. Consider the following visualization of a surjection

𝑝 from Ω′ = {𝜔 ′
1
, 𝜔′

2
, 𝜔′

3
} onto Ω = {𝜔1, 𝜔2} and two decoding

functions decΩ′ and decΩ visualized as in IntervalEncode:

1/3 2/3

𝜔 ′
1

𝜔 ′
2

𝜔 ′
3Ω′

1/2

𝜔1 𝜔2 Ω

𝑝

Lemma 3.16 asserts that there exists 𝜋 with 𝑝 ◦decΩ′ = decΩ ◦𝜋 .
Indeed we can explicitly construct such a 𝜋 for this example: let

𝜋 be an automorphism that sends the interval [0, 1/3] to [0, 1/4],
the interval [2/3, 1] to [1/4, 1/2], and finally [1/3, 2/3] to [1/2, 1].
This construction generalizes nicely to any situation where the

preimages dec
−1
Ω′ (𝜔

′
𝑖
) and dec

−1
Ω (𝜔𝑖 ) are all intervals. In the fully

general case, these preimages can be arbitrary Lebesgue-measurable

sets, but every such set is measurably isomorphic to an interval [19,

344J], so the general case reduces to the one sketched above.

Lemma 3.17 (Correspondence). For any countable measurable par-

tition {𝐴𝑖 }𝑖∈𝐼 of [0, 1], let Fix{𝐴𝑖 }𝑖∈𝐼 be the subgroup of Aut[0, 1]
consisting of those automorphisms 𝜋 ∈ Aut[0, 1] fixing {𝐴𝑖 }𝑖∈𝐼 , so
that 𝜋 (𝐴𝑖 )△𝐴𝑖 negligible for all 𝑖 ∈ 𝐼 . For any two partitionsA and

B, it holds that FixA ⊆ FixB iff A is finer than B.

Proof. IfA is finer than B then certainly every 𝜋 fixingA fixes

B. For the converse, suppose for contradiction that A is not finer

than B, so there is some 𝐴 ∈ A and 𝐵1, 𝐵2 ∈ B with 𝐴 ∩ 𝐵1 and
𝐴 ∩ 𝐵2 both nonnegligible. Pick an arbitrary 𝜋 swapping 𝐴 ∩ 𝐵1
with𝐴∩𝐵2; 𝜋 fixesA but not B, contradicting FixA ⊆ FixB. □

The equivalence follows from these lemmas:

Theorem 3.18. EMS
d
≃ Set≪

d
.

For details, see the appendix: Theorem 3.18 follows from a spe-

cialization of Theorem C.33 using Lemmas 3.16 and 3.17 to satisfy

the preconditions. This equivalence of categories extends to an

equivalence of Models 1 and 2 of TinyProbSep. The argument is as

in Section 2.3: we package Models 1 and 2 into resource monoids

in EMS
d
and Set≪

d
respectively, and then show they correspond

across the equivalence EMS
d
≃ Set≪

d
.

To construct the resource monoid packaging Model 1 into EMS
d
,

we make use of a general recipe for constructing models of separa-

tion logic via the Day convolution [7, 15, 35]. The Day convolution

is a general construction lifting a monoidal structure on a base

category𝐶 to a monoidal structure on [𝐶op
; Set], see Day [14]. The

resource monoid (⊑, S2⊥, 𝑖, •) in Sch described in Section 2.3 can be

constructed using the Day convolution: the base category Shp has a
monoidal product given by coproduct of finite sets, and Day convo-

lution lifts this to a monoidal product ⊗ on [Shpop; Set]; applying
the Day convolution to the sheaf S gives the functor S ⊗ S, which

one can show is naturally isomorphic to S
2

⊥; the operations ⊑, 𝑖, •
can then be defined straightforwardly.

To apply this recipe for discrete probability, we replace Shp with

Surj≤𝜔 and coproduct + of finite sets with product × of sample

spaces. This makes (Surj≤𝜔 ,×, 1) a monoidal category, where the

unit 1 is the one-point sample space. Via the Day convolution, ×
lifts to a monoidal product ⊗ on [Surjop≤𝜔 ; Set]. Just as S ⊗ S is

isomorphic to the functor S
2

⊥ modelling separated stores, the Day

convolution P ⊗ P is isomorphic to a sheaf of probability spaces

that can be rendered independent with a suitable joint measure:

Proposition 3.19. The functor P ⊗ P is isomorphic to an atomic

sheaf P2⊥ sending each Ω ∈ Surj≤𝜔 to the set

{ ((𝜋1 ◦ 𝑝)−1 (P1), (𝜋2 ◦ 𝑝)−1 (P2))
| Ω1,Ω2 ∈ Surj≤𝜔 ,P1 ∈ P(Ω1),P2 ∈ P(Ω2), 𝑝 : Ω ↠ Ω1 × Ω2 }

of pairs of probability spaces on Ω that “factor through” a product

Ω1 × Ω2 along some projection 𝑝 : Ω ↠ Ω1 × Ω2.

The resource monoid operations can be defined as follows. First,

the subspace ordering ⊑ forms a natural transformation (⊑) : P ×
P → Prop. Next, there is natural transformation (•) : P2⊥ → P
sending a pair ((𝜋1◦𝑝)−1 (P1), (𝜋2◦𝑝)−1 (P2)) of probability spaces
that factor through some 𝑝 : Ω ↠ Ω1 ×Ω2 to 𝑝

−1 (P1 ⊗P2), where
P1 ⊗ P2 is the usual product probability space on Ω1 × Ω2. Each

P2⊥ (Ω) is a subset of (P×P) (Ω), and collecting the canonical subset-
inclusions into an Ω-indexed family forms a natural transformation

𝑖 : P2⊥ ↩→ P × P. Finally, • is associative and commutative and

monotonewith respect to⊑, and has unit the natural transformation

emp : 1 → P sending a sample space Ω to the trivial probability

space (Ω, {∅,Ω}, 𝜇) with 𝜇 (Ω) = 1.

Proposition 3.20. (⊑, P2⊥, 𝑖, •, emp) is a resource monoid in EMS
d
.

Model 2 can be packaged into a resource monoid in Set≪
d

analo-

gously. Let P
2

⊥ be the discrete absolutely continuous set {(P1,P2) |
P1,P2 ∈ P,P1 • P2 defined} of pairs of independently combinable

countable measured partitions of [0, 1] with pointwise group action.
This is a subset of P × P; both the canonical inclusion map 𝑖 and

the function • : P
2

⊥ → P sending a pair (P1,P2) of independently
combinable probability spaces on [0, 1] to their independent combi-

nation P1 • P2 are equivariant. Finally, the ordering relation ⊑ on

probability spaces on [0, 1] is equivariant, so defines a morphism

(⊑) : P × P→ Prop, and this ordering relation has as least element

emp the measured partition containing a single component with

probability 1.

The following theorem establishes that (⊑, P2⊥, 𝑖, •) is a resource
monoid together with an analog of Fact 1.1 for discrete probability:

Theorem3.21. The resourcemonoid (⊑, P2⊥, 𝑖, •, emp) corresponds
to (⊑, P2⊥, 𝑖, •, emp) across the equivalence EMS

d
≃ Set≪

d
.
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4 THE CONTINUOUS CASE
In this section we generalize Section 3 from discrete to continuous

probability: EMS
d
becomes a category EMS of enhanced measurable

sheaves, and Set≪
d

becomes a category Set≪ of absolutely continuous
sets. Due to the amount of measure theory required, we stick to

stating the key definitions and lemmas; the full details can be found

in Appendices D and E.

4.1 Enhanced measurable sheaves
The first step in generalizing EMS

d
to EMS is to replace the base

category Surj≤𝜔 of discrete sample spaces with a base category of

continuous sample spaces.

The starting point for this generalization is the following obser-

vation. Let Prob+≤𝜔 be the category whose objects are countable

probability spaces (Ω, 𝜇 : Ω → [0, 1]) with 𝜇 (𝜔) > 0 for all 𝜔 ∈ Ω,
and whose morphisms (Ω, 𝜇) → (Ω′, 𝜇′) are measure-preserving

maps 𝑓 : Ω → Ω′; i.e.,
∑
𝑓 (𝜔 )=𝜔 ′ 𝜇 (𝜔) = 𝜇′ (𝜔 ′) for all 𝜔 ′ ∈ Ω′.

There is a functor U
d
: Prob+≤𝜔 → Surj≤𝜔 that forgets the mea-

sures 𝜇: measure-preserving maps 𝑓 between probability spaces

with strictly positive measure are surjective because 𝑓 −1 (𝑦) must

be nonempty for all 𝑦 ∈ cod(𝑓 ). The category Surj≤𝜔 is the im-

age of Prob+≤𝜔 under U
d
: every nonempty countable set Ω can

be equipped with a strictly positive probability measure, and for

every surjective function 𝑝 : Ω′ ↠ Ω, there exist strictly positive

probability measures 𝜇′ on Ω′ and 𝜇 on Ω making 𝑝 a measure-

preserving map (Ω′, 𝜇′) → (Ω, 𝜇). Thus Surj≤𝜔 can be thought

of as a category of probability spaces where one has forgotten all

measures.

To generalize this situation from discrete to continuous prob-

ability, we replace the category Prob+≤𝜔 of countable probability

spaces with a category of continuous probability spaces:

Definition 4.1 (The category Prob
std

). Let Prob
std

be the category

of standard probability spaces [42] and measure-preserving maps

quotiented by almost-everywhere equality.

Then, we replace the functor U
d
: Prob+≤𝜔 → Surj≤𝜔 with a

functor U that forgets continuous probability measures. The idea

behind this forgetting process is as follows. Given a probability

space (𝑋, F , 𝜇), one can forget everything about the measure 𝜇

except for which subsets are negligible, leaving behind an enhanced
measurable space (𝑋, F ,N), where N is the 𝜎-ideal of 𝜇-negligible

sets [36, Definition 4.4]. Given a measure-preserving map [𝑓 ] :
(𝑋, F , 𝜇) → (𝑌,G, 𝜈) quotiented by almost-everywhere equality

where 𝜇 has negligibles N and 𝜈 has negligiblesM, one can forget

everything about [𝑓 ] measure-preserving except for the fact that

𝜈 (𝐺) = 0 iff 𝜇 (𝑓 −1 (𝐺)) = 0, leaving behind an equivalence class

[𝑓 ] with 𝑓 −1 (𝐺) ∈ N iff 𝐺 ∈ M for all 𝐺 ∈ G. This motivates the

following definitions.

Definition 4.2 (The category EMS
std

). A standard enhanced mea-
surable space is tuple (𝑋, F ,N) for which there exists a measure

𝜇 making (𝑋, F , 𝜇) a standard probability space with negligibles

N . Given enhanced measurable spaces (𝑋, F ,N) and (𝑌,G,M),
a measurable map 𝑓 : (𝑋, F ) → (𝑌,G) is negligible-preserving
and reflecting if 𝑓 −1 (𝐺) ∈ N iff 𝐺 ∈ M for all 𝐺 ∈ G; two such

maps 𝑓 , 𝑓 ′ are almost-everywhere equal if 𝑓 −1 (𝐺)△𝑓 ′−1 (𝐺 ′) ∈ N
for all 𝐺,𝐺 ′ ∈ G with 𝐺△𝐺 ′ ∈ M. Let EMS

std
be the category of

standard enhanced measurable spaces and negligible-preserving-

and-reflecting maps quotiented by almost-everywhere equality.

Proposition 4.3. Let U : Prob
std
→ EMS

std
be the functor that

sends probability spaces (𝑋, F , 𝜇) with negligibles N to enhanced

measurable spaces (𝑋, F ,N). This functor is surjective on objects,

and any morphism of standard enhanced measurable spaces arises

from a measure-preserving map equipping those spaces with stan-

dard probability measures.

Then, just as EMS
d
is the category of atomic sheaves on Surj≤𝜔 ,

EMS is the category of atomic sheaves on EMS
std

:

Proposition 4.4. EMS
std

has the right Ore property.

Definition 4.5. Let EMS be the full subcategory of [EMSop
std

; Set]
consisting of atomic sheaves. Objects of EMSwill be called enhanced
measurable sheaves.

Inside EMS, there are continuous analogs of the discrete en-

hanced measurable sheaves RV of random variables and P of dis-

crete probability spaces. The continuous analog of RV models 𝐴-

valued random variables for 𝐴 Polish, following Simpson [46, 47]:

Definition 4.6. For any measurable space (𝐴,G) arising from a

Polish space, the sheaf of random variables is:

RV𝐴 (Ω, F ,N) = {measurable maps (Ω, F ) → (𝐴,G)} /=N-a.e.
RV𝐴 (𝑝 : Ω′ → Ω) ( [𝑋 ] : RV𝐴 (Ω)) : RV𝐴 (Ω′) = [𝑋 ◦ 𝑝]
For proof that RV𝐴 is indeed a sheaf, see Lemma D.3. Next, to

generalize P from discrete to continuous probability, wemake use of

the following observation: every discrete probability space (Ω, F , 𝜇)
arises via pullback from a surjection 𝑋 : Ω ↠ 𝐴 in which the set

𝐴 is equipped with a probability mass function 𝜈 : 𝐴 → [0, 1],
by setting F := {𝑋 −1 (𝑎) | 𝑎 ∈ 𝐴} and 𝜇 (𝑋 −1 (𝑎)) = 𝜈 (𝑎). Thus,
discrete probability spaces (Ω, F , 𝜇) can be represented by Surj≤𝜔
morphisms Ω → U

d
(𝐴, 𝜇) for (𝐴, 𝜇) ∈ Prob+≤𝜔 , where Ud

is the

functor Surj≤𝜔 → Prob+≤𝜔 that forgets measures. This motivates

the following generalization to the continuous setting.

Definition 4.7. The sheaf of probability spaces is

P := colim𝐴 : Core(Prob
std
)ょ(U𝐴),

whereょis the Yoneda embedding,Core(Prob
std
) is the subcategory

of Prob
std

-isomorphisms, and the colimit is taken in presheaves.

(See Definition D.6 for proof that P is indeed a sheaf.) Concretely, the
presheafP sends (Ω, F ,N) : EMS

std
to the set of pairs ((𝐴,G, 𝜇), 𝑋 )

where (𝐴,G, 𝜇) : Prob
std

and 𝑋 is a EMS
std

-map from (Ω, F ,N)
to U(𝐴,G, 𝜇), quotiented by ((𝐴,G, 𝜇), 𝑋 ) ∼ ((𝐴′,G′, 𝜇′), 𝑋 ′) iff
there is a Prob

std
-iso 𝑖 : (𝐴,G, 𝜇) → (𝐴′,G′, 𝜇′) with 𝑋 ′ = 𝑈 (𝑖)𝑋 .

The action on morphisms is given by precomposition.

Using RV and P, we generalize the resource monoid of Theo-

rem 3.21 to a resource monoid of continuous probability spaces.

The monoidal category (Surj≤𝜔 ,×, 1) of discrete sample spaces

becomes a monoidal category (EMS
std
, ⊗, 1) of continuous sample

spaces, with monoidal product ⊗ inherited from the usual tensor

product ⊗Prob
std

of standard probability spaces:

Definition 4.8. Given two standard enhanced measurable spaces

𝑋,𝑌 , their tensor product 𝑋⊗𝑌 is defined to be U(𝑋 ′ ⊗Prob
std

𝑌 ′),
where 𝑋 ′ and 𝑌 ′ are arbitrary standard probability spaces with

U(𝑋 ′) = 𝑋 and U(𝑌 ′) = 𝑌 .



A Nominal Approach to Probabilistic Separation Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

This is well-defined — the choice of𝑋 ′, 𝑌 ′ does not matter — and

extends to a bifunctor on EMS
std

making (EMS
std
, ⊗, 1) a symmetric

monoidal category with unit the one-point space 1. For details, see

Appendix B.2. Lifting ⊗ to [EMSop
std

; Set] via the Day convolution

yields a resource monoid in EMS:

Lemma 4.9. The Day convolution P ⊗ P is a sheaf, and there is a

monic map of sheaves 𝑖 : P ⊗ P ↩→ P × P.

Lemma 4.10. There is a map of sheaves ⊑: P × P→ Prop, where

Prop is the constant sheaf at {⊤,⊥}, and a map of sheaves emp :

1→ P, making (P, emp) a poset in EMS with least element emp.

Lemma 4.11. There is a map of sheaves • : P ⊗ P→ P, monotone

with respect to ⊑, such that (P, •, emp) is a partial commutative

monoid in EMS.

Theorem 4.12. (⊑, P2⊥, 𝑖, •, emp) is a resource monoid in EMS.

For details, see Appendix D. While the colimit presentation of P
makes it easier to check for sheafhood and to construct the above

resource monoid, it is difficult to work with in the concrete calcula-

tions to follow. To address this, we show P equivalent to a sheaf of

continuous probability spaces that arise via pullback along EMS
std

-

maps. To do this, we must take care to define pullback in a way

that respects the negligible ideals contained in EMS
std

-objects.

Definition 4.13. For (𝑋, F ,N) ∈ EMS
std

and (𝑌,G, 𝜇) ∈ Prob
std

and 𝑓 : (𝑋, F ,N) → U(𝑌,G, 𝜇), the enhanced pullback of (𝑌,G, 𝜇)
along 𝑓 , written 𝑓 ∗ (G, 𝜇), is the pair (𝑓 ∗G, 𝑓 ∗𝜇) defined by

𝑓 ∗G = {𝑓 −1 (𝐺)△𝑁 | 𝐺 ∈ G, 𝑁 ′ ∈ N}
𝑓 ∗𝜇 (𝑓 −1 (𝐺)△𝑁 ) = 𝜇 (𝐺) for all 𝐺 ∈ G, 𝑁 ∈ N

Enhanced pullback makes (𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) a probability space with

negligibles N and 𝑓 a measure-preserving map (𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) →
(𝑌,G, 𝜇).

Definition 4.14. A probability space on (𝑋, F ,N) ∈ EMS
std

is a

pair (G, 𝜇) with N ⊆ G ⊆ F and 𝜇 a probability measure with

negligibles N . Call such a pair standardizable if (𝑋,G, 𝜇) arises via
enhanced pullback along a map 𝑓 : (𝑋, F ,N) → U(𝑌,G, 𝜇) for
some (𝑌,G, 𝜇) ∈ Prob

std
.

With these definitions in hand, the colimit P is equivalent to

a sheaf of standardizable probability spaces, with action on mor-

phisms given by enhanced pullback:

Lemma 4.15. P is equivalent to the following sheaf:

ˆP(Ω) = {(G, 𝜇) | (G, 𝜇) standardizable on Ω}
ˆP(𝑓 : Ω′ → Ω) (G, 𝜇) = 𝑓 ∗ (G, 𝜇)

Moreover, the Day convolution P ⊗ P corresponds to a sheaf of

independently combinable probability spaces:

Lemma 4.16. P ⊗ P is equivalent to the following sheaf P2⊥:

P2⊥ (Ω) =
{
((G, 𝜇), (H , 𝜈))

���� (G, 𝜇) and (H , 𝜈) standardizable
and independently combinable

}
P2⊥ (𝑓 : Ω′ → Ω) ((G, 𝜇), (H , 𝜈)) = (𝑓 ∗ (G, 𝜇), 𝑓 ∗ (H , 𝜈))

Via these equivalences, the resource monoid in Theorem 4.12

parallels its discrete analog (Proposition 3.20). Across P � ˆP, the
ordering ⊑ corresponds to the generalization of Definition 3.6 from

countable measured partitions to standardizable probability spaces.

Across P ⊗ P � P2⊥, the monic map 𝑖 corresponds to the canonical

inclusion P2⊥ ↩→ P × P, and the combining operation • corresponds
to the map P2⊥ → P that sends independently-combinable pairs of

standardizable probability spaces to their independent combination.

For details, see Appendix E.2.

4.2 Absolutely continuous sets
Finding a continuous analog to Set≪

d
boils down to showing con-

tinuous analogs of Lemmas 3.16 and 3.17. In the discrete setting,

these lemmas hold because every discrete probability space can be

encoded as a measured partition that leaves enough room in the

sample space [0, 1] for fresh randomness. To create a continuous

analog, we fix an enormous sample space following Li et al. [29]:

Definition 4.17. The Hilbert cube I𝜔 is the standard enhanced

measurable space ( [0, 1]𝜔 , F ,N) of infinite sequences in the inter-

val [0, 1]. The 𝜎-algebra F and negligiblesN are those of the usual

Lebesgue measure on [0, 1]𝜔 .

Then, to ensure that there is always enough room left over in I𝜔

for fresh randomness, we encode all probability spaces using only

finitely many dimensions at a time:

Definition 4.18. A standardizable probability space (G, 𝜇) on I𝜔

has finite footprint if it arises by enhanced pullback along a map

I𝜔 → 𝑋 that factors through proj
1..𝑛 for some 𝑛, where proj

1..𝑛 is

the canonical projection I𝜔 → [0, 1]𝑛 .

Analogously, the group Aut[0, 1] of Set≪
d

becomes a group of

finite-dimensional permutations of the Hilbert cube:

Definition 4.19. A EMS
std

-automorphism 𝜋 : I𝜔 → I𝜔 has finite
width if it is of the form 𝜋 ′ × 1I𝜔 for some EMS

std
-automorphism

𝜋 ′ : [0, 1]𝑛 → [0, 1]𝑛 . Let G≪ be the subgroup of AutEMS
std

I𝜔

consisting only of those automorphisms with finite width.

Then, the topology on Aut[0, 1] generated by countable measur-

able partitions becomes a topology on G≪ generated by standard-

izable sub-𝜎-algebras with finite footprint:

Definition 4.20 (Topology on G≪). A subgroup 𝑈 of G≪ is open
if for every 𝜋 in 𝑈 there exists (F , 𝜇) with finite footprint such

that 𝜋 ∈ FixF ⊆ 𝑈 , where FixF is the subgroup of those 𝜋 in G≪

with 𝜋 (𝐹 ) =a.e. 𝐹 for all 𝐹 ∈ F .

Definition 4.21. Set≪ is the category of G≪-sets with open sta-

bilizers and equivariant functions between them; objects of Set≪

will be called absolutely continuous sets.

There are absolutely continuous sets analogous to the sheaves

RV𝐴 of random variables and P of standardizable probability spaces:

Definition 4.22. For𝐴 a Polish space, a random variable𝑋 : I𝜔 →
𝐴 has finite footprint if it factors through proj

1..𝑛 for some 𝑛. Let

RV𝐴 be the set of random variables with finite footprint. This forms

an absolutely continuous set, with action 𝑋 · 𝜋 = 𝑋 ◦ 𝜋 .
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Definition 4.23. Let P be the set of standardizable probability

spaces on I𝜔 with finite footprint. This forms an absolutely contin-

uous set, with action (F , 𝜇) · 𝜋 = 𝜋∗ (F , 𝜇).

These yield a resource monoid in Set≪ .

Theorem 4.24. (⊑, P2⊥, 𝑖, •, emp) is a Set≪ resource monoid, where

• ⊑: P × P → Prop is the map that sends ((G, 𝜇), (H , 𝜈)) to ⊤ iff

G ⊆ H and 𝜈 |G = 𝜇, where Prop is the two-element set with

trivial action.

• P
2

⊥ is the set of pairs ((G, 𝜇), (H , 𝜈)) ∈ P × P for which (G, 𝜇)
and (H , 𝜈) are independently combinable.

• 𝑖 is the inclusion P
2

⊥ ↩→ P × P.
• • : P2⊥ → P is the map that sends independently-combinable

pairs to their independent combination.

• emp : 1→ P is the constant map at the probability space 𝑓 ∗1 on
I𝜔 arising from enhanced pullback along the unique EMS

std
-map

I𝜔 → U(1) into the one-point probability space 1.

4.3 The equivalence
By choosing I𝜔 as underlying sample space and topologizingAut I𝜔

to permit only objects that use finitely-many dimensions of I𝜔 at

a time, we obtain continuous analogs of Homogeneity and Corre-

spondence. This relies crucially on both the finiteness of footprints

and the inclusion of negligible ideals in the base category EMS
std

.

Negligible ideals allow passing to measure algebra [19, 321A]:

Definition 4.25. A measure algebra is a tuple (𝔄, 𝜇) consisting of

a complete Boolean algebra 𝔄 and a function 𝜇 : 𝔄 → [0, 1] such
that (1) 𝜇 (𝐴) > 0 for 𝐴 ≠ ⊥ and (2) 𝜇 is countably additive in the

sense that 𝜇 (∨𝑖 𝐴𝑖 ) =
∑
𝑖 𝜇 (𝐴𝑖 ) for all countable families {𝐴𝑖 }𝑖∈𝐼

with 𝐴𝑖 ∧𝐴 𝑗 = ⊥ for all 𝑖 ≠ 𝑗 . A measure algebra homomorphism
from (𝔄, 𝜇) to (𝔅, 𝜈) is a complete Boolean algebra homomorphism

𝑓 : 𝔄 → 𝔅, measure-preserving in the sense that 𝜈 (𝑓 (𝐴)) = 𝜇 (𝐴)
for all 𝐴 ∈ 𝔄.

Every (𝑋, F , 𝜇) in Prob
std

yields a measure algebra (F /𝜇, 𝜇),
where F/𝜇 is the complete Boolean algebra of events 𝐹 ∈ F mod

𝐹 ∼ 𝐹 ′ iff 𝜇 (𝐹△𝐹 ′) = 0, and 𝜇 ( [𝐹 ]) = 𝜇 (𝐹 ) [19, 321H]. Every
measure-preserving map 𝑓 from (𝑋, F , 𝜇) to (𝑌,G, 𝜈) defines a
homomorphism 𝑓 ∗ from (G/𝜈, 𝜈) to (F /𝜇, 𝜇) sending [𝐺] ∈ G/𝜈
to [𝑓 −1 (𝐺)] ∈ F /𝜇 [19, 324M]. This gives a duality:

Definition 4.26. A standard probability algebra is a measure alge-

bra (𝔄, 𝜇) arising from a standard probability space as described

above. Let ProbAlg
std

be the category of standard probability alge-

bras and measure algebra homomorphisms between them.

Lemma 4.27. Prob
std
≃ ProbAlgop

std
.

A similar duality holds also for EMS
std

:

Definition 4.28. A standard measurable algebra is a complete

Boolean algebra𝔄 arising from a standard probability space; i.e.𝔄 is

isomorphic to a Boolean algebra F/𝜇 for some (𝑋, F , 𝜇) ∈ Prob
std

.

Let MbleAlg
std

be the category of standard measurable algebras

and injective complete boolean algebra homomorphisms.

Lemma 4.29. EMS
std
≃ MbleAlgop

std
.

Lemmas 4.27 and 4.29 allow importing the extensive technical de-

velopment of measure algebras from Fremlin [19]. In particular, the

algebraic perspective reveals that the finite-footprint property from

Section 4.2 is a means of producing relatively-atomless subalgebras:

Definition 4.30 (Fremlin [19, 331A]). Let𝔄 be a complete Boolean

algebra and 𝔅 ⊆ 𝔄 a subalgebra. An element 𝑎 ∈ 𝔄 is a 𝔅-relative
atom of𝔄 if the principal ideal generated by 𝑎 in𝔄 is {𝑎∩𝑏 | 𝑏 ∈ 𝔅}.
The algebra 𝔄 is𝔅-relatively atomless if it has no𝔅-relative atoms.

Theorem 4.31. Let 𝔄 be the measurable algebra of I𝜔 . For any
(G, 𝜇) with finite footprint, 𝔄 is G/𝜇-relatively atomless.

Relative-atomlessness is key to obtaining continuous analogs of

Homogeneity and Correspondence, which hold specifically for the

case where subalgebras are relatively atomless:

Lemma 4.32 (Homogeneity). For𝔄 a standard measurable algebra

and subalgebras 𝔅,ℭ ⊆ 𝔄 that render it relatively-atomless, and a

MbleAlg
std

-morphism 𝑓 : 𝔅 ↩→ ℭ, there exists a complete Boolean

algebra automorphism 𝜋 : 𝔄 → 𝔄 with 𝜋 (𝑏) = 𝑓 (𝑏) for all 𝑏 ∈ 𝔅.

Lemma 4.33 (Correspondence). Let 𝔄 be a standard measurable

algebra. For any subalgebra ℭ ⊆ 𝔄, let Fixℭ be the group of 𝔄-

automorphisms fixing every 𝑐 in ℭ. If 𝔄 is ℭ-relatively atomless

then Fixℭ ⊆ Fix𝔇 iff𝔇 ⊆ ℭ.

These yield a continuous analog of Theorem 3.18:

Theorem 4.34. EMS ≃ Set≪ .

Finally, a careful calculation across this equivalence shows that

the resource monoids in Theorems 4.12 and 4.24 indeed correspond,

yielding an analog of Fact 1.1 for continuous probability:

Theorem 4.35. Across EMS ≃ Set≪ , the sheaf P corresponds to

P, the sheaf RV𝐴 corresponds to RV𝐴 , and the resource monoid

(⊑, P⊗P, 𝑖, •, emp) in EMS corresponds to (⊑, P2⊥, 𝑖, •, emp) in Set≪ .

5 DISCUSSION & RELATEDWORK

Atomic sheaves for probability. Tao [52] defines probabilistic

notions as those invariant under extension of the sample space.

Along these lines, Simpson [47] constructs a topos of atomic sheaves

on a category of probability spaces and measure-preserving maps;

in it, he presents a sheaf of random variables and an extension of

the Giry monad [22] to sheaves, and shows how concepts such as

independence and expectation can be internalized [46, 48].

Simpson’s topos is similar to our EMS, but our base category
EMS

std
omits measures and its maps are quotiented by almost-

everywhere equality; we instead model measures explicitly via

the sheaf P. As we have focused on separation logic, we have not

investigated whether the Giry monad extends to EMS and the prob-
abilistic concepts that can be expressed internally; this would make

interesting future work. Simpson [47] mentions a resemblance to

nominal sets, but does not extensively develop the notion to the

best of our knowledge.

Simpson’s topos also serves as amodel of Atomic Sheaf Logic [49],

a recently-developed logic axiomatizing the interaction between

conditional independence and a notion of atomic equivalence, which

https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=1
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=3
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=26
https://www1.essex.ac.uk/maths/people/fremlin/chap33.pdf#page=1


A Nominal Approach to Probabilistic Separation Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

in the probabilistic setting denotes equidistribution of random vari-

ables, with potential applications to developing proof-relevant prob-

abilistic separation logics; it would be interesting to explore whether

our topos admits analogous constructions.

Categorical probability. There are numerous categorical formu-

lations of probability. Fritz [20] develops probability theory purely

synthetically by axiomatizing equational properties known to hold

for Markov kernels. Jackson [26], building on Breitsprecher [10],

gives an alternative sheaf-theoretic model of probability by taking

sheaves on a single measurable space rather than a category of

measurable spaces; we speculate that there could be a relationship

between this model and ours similar to the relationship between

petit and gros topoi of sheaves on topological spaces [30].

Quasi-Borel spaces. The category QBS of quasi-Borel spaces [24]

is a richly developed model of higher-order probability. Whereas

QBS has been used extensively to model higher-order probabilistic

languages [1, 44, 45, 53], our goal in constructing EMS and Set≪ has

been focused on refining models of probabilistic separation logic.

Structurally, QBS and EMS are quite different: QBS is a well-pointed
quasi-topos while EMS is a non-well-pointed topos. However, as

remarked in Heunen et al. [24, Prop. 34], QBS is related to particular

presheaves on the category of standard measurable spaces. This

suggests connections to EMS, since it is a category of sheaves on

EMS
std

, but there is a gap between these two settings: EMS
std

-

morphisms are quotiented by almost-everywhere equality whereas

maps of standard measurable spaces are not. We leave elucidating

the relationship between our setting and QBS to future work.

General representation theorems. The equivalence Sch ≃ Nom
can be obtained via a Fraïssé limit [25, §7.1], a recipe for making

universal objects (e.g., N) capable of representing a class of models

(e.g., finite sets). More generally, there is a long line of results giving

groupoid-based representations of categories [8, 9, 11, 16, 27, 31],

with a history going back to Grothendieck [17, 23]. Caramello [12]

is particularly relevant, as it gives conditions closely resembling

Lemmas 3.16 and 3.17 under which categories of atomic sheaves

are equivalent to categories of continuous Aut(𝑢)-sets for suitable
objects 𝑢. We are currently investigating whether Theorems 3.18

and 4.34 can be obtained via these general results, with an eye

towards generalizing beyond probability to the quantum setting.

Probabilistic separation logic. PSL [6] is the first separation

logic whose separating conjunction models independence, by split-

ting random substitutions; it has since been extended to support

conditional independence [3] and negative dependence [4], and

to the quantum setting [55]. In contrast to PSL and its extensions,

Lilac [29] has an alternative model of separation, via independent

combination. Lilac’s model is complicated: independent combina-

tion is an intricate measure-theoretic operation, an intricate proof

is required to show it forms a monoid, and many side conditions

on this monoid are needed for soundness of Lilac’s proof rules.

Theorem 4.35 simplifies and clarifies Lilac’s model. It shows that

independent combination arises naturally from the well-known

tensor product of standard probability spaces; that independent

combination forms a monoid then follows from the fact that tensor

product is monoidal. The resource monoid in Theorem 4.35 replaces

the side conditions on Lilac’s monoid with the single notion of

standardizability — a condition well-motivated by the intuition that

probability spaces should arise via pullback along EMS
std

-maps.

Theorem 4.35 also improves on the model in Li et al. [29] in

multiple ways. Quotienting by negligiblity yields a model invariant

under almost-everywhere equality, whereas the model in Li et al.

[29] must manually track 𝜎-ideals of negligible sets. Interpreting

propositions as equivariant maps implies our model is invariant

under finite-width permutations of I𝜔 . Finally, using the internal
language of EMS, one can interpret quantification over propositions,
allowing to generalize Lilac to a higher-order logic; in the future,

we would like to explore whether this higher-order generalization

can be used to specify properties of higher-order programs.

An aspect of Lilac not captured by our model is its condition-
ing modality, interpreted by disintegration [13]. This is difficult to

capture in our model because EMS
std

-objects come with a fixed

collection of negligible sets, whereas disintegration can change

which sets are negligible.

Probability and name generation. Recent work has identified

connections between probability theory and name generation: Sta-

ton et al. [51] provides a semantics for a probabilistic language

that treats random variables as dynamically-allocated read-only

names, and Sabok et al. [43] show that QBS can be used to charac-

terize observational equivalence of stateful imperative programs

by interpreting dynamic allocation as probabilistic sampling. The

resemblance between our probabilistic Theorem 4.35 and the store-

based Fact 1.1 provides further evidence along these lines.

Nominal sets. Many constructions exist in Nom beyond its ability

to capture permutation-invariance: freshness quantification [32]

captures the informal convention of picking fresh names [5], a

name abstraction [38, §4] type former gives a uniform treatment

of binding, and nominal restriction sets [38, §9.1] models languages

with locally generated names [33, 39]. It would be interesting to

explore whether analogous constructions can be carried out in

Set≪ , to obtain analogous treatments of the informal convention

of picking fresh sample spaces [19, §27] and to provide models of

probabilistic languages with locally generated random variables.

6 CONCLUSION
We unify two different approaches to separating probabilistic state:

the usual product of probability spaces and independent combi-

nation. To do this, we show that separation-as-product lives in a

category EMS of enhanced measurable sheaves, that separation-as-

independent-combination lives in a category Set≪ of absolutely

continuous sets, and that these two notions of separation corre-

spond across an equivalence EMS ≃ Set≪ . This validates the use
of independent combination in probabilistic separation logic [29],

clarifies independent combination’s relationship with traditional

formulations of independence, and suggests improvements to exist-

ing models. Finally, as a probabilistic analog of Nom, the category

Set≪ creates new probabilistic interpretations of nominal concepts,

which we hope will create more opportunities for using nominal

techniques in probability.

https://www1.essex.ac.uk/maths/people/fremlin/chap27.pdf#page=1
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A OVERVIEW
The goal of this appendix is to build up towards Appendices D and E, which give sheaf- and permutation-based models of probabilistic

separation logic, prove their equivalence, and show the correspondence between the tensor-product- and independent-combination-based

models of probabilistic separation. To lead into this result, the appendix is structured as follows.

• Appendix B imports the measure theory and Appendix C the sheaf theory needed to present the probabilistic counterpart of Section 2.

Most of the results are for handling continuous probability, but some (in particular, Lemma C.23 characterizing the Day convolution)

are needed even in the discrete case. These sections are best not read linearly on first reading, but used as reference when reading

Appendices D and E.

• Appendix D presents enhanced measurable sheaves.

• Appendix E presents absolutely continuous set and our probabilistic analogue of Fact 1.1.

On reading, we encourage you to follow concepts by clicking on hyperlinks that take you directly to definitions.

B GENERAL MEASURE THEORY
Throughout this section we rely heavily on Fremlin [19].

B.1 Standard probability spaces and probability algebras
Definition B.1 (standard Borel space). A standard Borel space is a measurable space (𝑋, F ) such that 𝑋 can be made into a complete

separable metrizable space (in other words, a Polish space) whose Borel 𝜎-algebra is F [19, 424A].

Definition B.2 (standard probability space). A standard probability space is a probability space (𝑋, F , 𝜇) where (𝑋, F ) is the completion of

a standard Borel space with respect to the negligibles of 𝜇. (For more on standard probability spaces, see Rohlin [42], where they are called

Lebesgue spaces; in particular, Rohlin [42, §2.7] justifies the definition given here.)

Definition B.3 (the category Prob
std

). Let Prob
std

be the category whose objects are standard probability spaces and whose morphisms are

measure-preserving maps quotiented by almost-sure equality:

Prob
std
((𝑋, F , 𝜇), (𝑌,G, 𝜈)) = {𝑓 : (𝑋, F ) → (𝑌,G) measurable | 𝜇 (𝑓 −1𝐺) = 𝜈 (𝐺) for all 𝐺 in G}/=a.s.

where 𝑓 =a.s. 𝑔 iff {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ≠ 𝑔(𝑥)} is 𝜇-negligible

Definition B.4 (measure algebra). A measure algebra is a pair (𝔄, 𝜇) where 𝔄 is a complete boolean algebra (i.e., a boolean algebra with all

small meets and joins) and 𝜇 is a function 𝔄 → [0, 1] satisfying
• 𝜇 (⊥) = 0

• 𝜇 (𝑎) > 0 for all 𝑎 ≠ ⊥
• 𝜇

( ∨
𝑖 𝑎𝑖

)
=

∑
𝑖 𝜇 (𝑎𝑖 ) for all sequences (𝑎𝑖 )𝑖∈N with 𝑎𝑖 ∧ 𝑎 𝑗 = ⊥ for all 𝑖 ≠ 𝑗 .

A probability algebra is a measure algebra (𝔄, 𝜇) with 𝜇 (⊤) = 1.

See Fremlin [19, 321A] for more information on measure algebras. Our definitions deviate slightly from the definitions given there: our

measure-algebras are closed under all small meets and joins, so correspond to the notion of Dedekind-complete measure algebra [19, 314A(a)],

whereas the definition in Fremlin [19, 321A] only requires the measure algebras to be Dedekind 𝜎-complete (closed under countable meets

and joins). This change in terminology is motivated by the fact that all probability spaces will give rise to Dedekind-complete measure

algebras:

Construction B.5. Every probability space (𝑋, F , 𝜇) gives rise to a corresponding measure algebra (𝔄, 𝜇) as follows. Let N be the 𝜎-ideal

of 𝜇-negligible sets. Set 𝔄 to the quotient boolean algebra F/N . Elements of 𝔄 are equivalence classes [𝐹 ] for 𝐹 ∈ F , modulo [𝐹 ] = [𝐹 ′] iff
𝐹△𝐹 ′ (the symmetric difference of 𝐹 and 𝐹 ′) is 𝜇-negligible. Define 𝜇 by 𝜇 [𝐹 ] = 𝜇 (𝐹 ). Let alg(𝑋, F , 𝜇) denote the measure algebra constructed

from a probability space (𝑋, F , 𝜇) in this way.

For more on this construction, see Fremlin [19, 321H].

Lemma B.6. For every probability space (𝑋, F , 𝜇) it holds that alg(𝑋, F , 𝜇) is a Dedekind-complete measure algebra in the sense of Fremlin,

so a measure algebra in our sense.

Proof. alg(𝑋, F ,N) is a probability algebra [19, 322A(a)], so localizable [19, 322C], so Dedekind-complete [19, 322A(e)]. □

Definition B.7 (homomorphism of measure algebras). Given two measure algebras (𝔄, 𝜇) and (𝔅, 𝜈), a measure-algebra homomorphism
from (𝔄, 𝜇) to (𝔅, 𝜈) is a complete-boolean-algebra homomorphism 𝑓 : 𝔄 → 𝔅 which preserves measures: 𝜈 (𝑓 (𝑎)) = 𝜇 (𝑎) for all 𝑎 in 𝔄.

See Fremlin [19, 324I] for more information on measure-algebra homomorphisms; just as our definition of measure algebra corresponds to

Fremlin’s Dedekind-complete measure algebra, our definition of measure-algebra homomorphism corresponds to Fremlin’s order-continuous

measure-algebra homomorphism.

https://www1.essex.ac.uk/maths/people/fremlin/chap42.pdf#page=30
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=1
https://www1.essex.ac.uk/maths/people/fremlin/chap31.pdf#page=32
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=1
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=3
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=5
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=6
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=5
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=25
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Definition B.8 (simple product of measure algebras). Given two measure algebras (𝔄, 𝜇) and (𝔅, 𝜈), their simple product (Fremlin [19,

322L]) is the measure algebra (𝔄 ×𝔅, 𝜆) where 𝔄 ×𝔅 is the product boolean algebra with boolean-algebra operations computed pointwise

and 𝜆 is the measure defined by 𝜆(𝑎, 𝑏) = 𝜇 (𝑎) + 𝜈 (𝑏) for all 𝑎 ∈ 𝔄 and 𝑏 ∈ 𝔅. Since joins and meets are pointwise, the boolean algebra

𝔄 ×𝔅 is Dedekind-complete if 𝔄,𝔅 are.

The idea is that the simple product is an algebraic counterpart to the coproduct of measure spaces: alg(𝑋 +𝑌 ) � alg𝑋 × alg𝑌 . It is known
that every standard probability space is isomorphic to the coproduct of countably many atoms and possibly an interval equipped with the

Lebesgue measure [42, p. 25, §2]. This fact motivates the following definition:

Definition B.9 (standard probability algebra). Say a probability algebra (𝔄, 𝜇) is standard if it is composed of at most countably many

atoms and an interval; that is, there exists some 𝑝 ∈ (0, 1] and a countable family of weights (𝑞𝑖 )𝑖∈𝐼 such that (𝔄, 𝜇) decomposes as a simple

product

(𝔄, 𝜇) � ( [0, 𝑝], 𝜆) ×
∏
𝑖∈𝐼

atom(𝑞𝑖 ) or (𝔄, 𝜇) �
∏
𝑖∈𝐼

atom(𝑞𝑖 )

where ( [0, 𝑝], 𝜆) is the measure algebra of Lebesgue measure on the interval [0, 𝑝] and atom(𝑞𝑖 ) is the algebra with two elements ⊥,⊤ where

⊤ has measure 𝑞𝑖 .

Definition B.10 (the category ProbAlg
std

). Let ProbAlg
std

be the category whose objects are standard probability algebras and whose

morphisms are measure-algebra homomorphisms.

The operation alg extends to a functor Prob
std
→ ProbAlgop

std
:

Construction B.11. Let (𝑋, F , 𝜇) and (𝑌,G, 𝜈) be probability spaces and alg(𝑋, F , 𝜇) = (𝔄, 𝜇) and alg(𝑌,G, 𝜈) = (𝔅, 𝜈) the corresponding
measure algebras. Let 𝑓 be a measure-preserving map (𝑋, F , 𝜇) → (𝑌,G, 𝜈). The map alg(𝑓 ) : (𝔅, 𝜈) → (𝔄, 𝜇) defined by setting

alg(𝑓 ) [𝐺] = [𝑓 −1 (𝐺)] for all 𝐺 ∈ G is a measure-algebra homomorphism. This construction respects almost-sure equality of measure-

preserving maps, sends the identity map to the identity homomorphism, and sends composition of measure-preserving maps 𝑓 ◦ 𝑔 to

flipped-composition of homomorphisms alg(𝑔) ◦ alg(𝑓 ).

Proof. If 𝐺△𝐺 ′ is 𝜈-negligible then 𝑓 −1 (𝐺△𝐺 ′) = 𝑓 −1 (𝐺)△𝑓 −1 (𝐺) is 𝜇-negligible since 𝑓 measure-preserving, so alg(𝑓 ) is well-
defined. Taking 𝑓 -preimages distributes over all unions and intersections, so alg(𝑓 ) is a homomorphism of complete boolean-algebras; this

homomorphism preserves the measures 𝜇 and 𝜈 because 𝑓 is measure-preserving. If 𝑓 =a.s. 𝑔, then 𝑓
−1 (𝐺)△𝑔−1 (𝐺) is 𝜇-negligible for all

𝐺 ∈ G, so alg(𝑓 ) = alg(𝑔). Finally, 𝑓 respects identities and composition because taking preimages does. □

Lemma B.12. The functor alg : Prob
std
→ ProbAlgop

std
witnesses an equivalence Prob

std
≃ ProbAlgop

std
.

Proof. The functor alg is essentially surjective on objects because any standard probability algebra is isomorphic to the measure algebra

generated by the coproduct of countably many atoms and possibly an interval equipped with the Lebesgue measure. Let (𝑋, F , 𝜇) and
(𝑌,G, 𝜈) be standard probability spaces with associated probability algebras alg(𝑋, F , 𝜇) = (𝔄, 𝜇) and alg(𝑌,G, 𝜈) = (𝔅, 𝜈). Fix an arbitrary

measure-algebra homomorphism 𝑓 ∗ : (𝔅, 𝜈) → (𝔄, 𝜇). The probability space (𝑋, F , 𝜇) is complete by definition and strictly localizable by

Fremlin [19, 221L]. The probability space (𝑌,G, 𝜈) is finite, hence semi-finite [19, 221F], and nonempty. Thus the preconditions of Fremlin

[19, 343B] are satisfied. As the completion of a probability measure on a standard Borel space, (𝑌,G, 𝜈) is a compact measure space [19,

433X(e)(i)] [19, 342G(b)], hence also locally compact [19, 342H(a)], so point (i) of Fremlin [19, 343B] holds. The implication (i)⇒(vi) of Fremlin

[19, 343B] then gives a measure-preserving map 𝑓 : (𝑋, F , 𝜇) → (𝑌,G, 𝜈) such that alg(𝑓 ) = 𝑓 ∗. This establishes fullness of the functor alg.
The space (𝑌,G, 𝜈) is countably separated (because it arises from a metrizable space), so by Fremlin [19, 343G] the map 𝑓 is unique up to

almost-sure equivalence. This establishess faithfulness of alg. □

Lemma B.13. Every map in ProbAlg
std

is mono.

Proof. All measure-preserving measure algebra homomorphisms are injective [19, 324K(a)]. □

Lemma B.14. Every map in Prob
std

is epi.

Proof. Combine Lemma B.12 and Lemma B.13. □

The following lemma seems closely connected to the theorems of Edalat [18].

Lemma B.15. The category Prob
std

has the right Ore property: for 𝑓 , 𝑔 with types as shown below, there exists a space𝑊 and maps ℎ, 𝑘

such that 𝑓 ℎ = 𝑔𝑘 :

(𝑊,K, 𝜏) (𝑌,G, 𝜈)

(𝑋, F , 𝜇) (𝑍,H , 𝜌)
ℎ

𝑘

𝑔

𝑓

https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=9
https://www1.essex.ac.uk/maths/people/fremlin/chap21.pdf#page=4
https://www1.essex.ac.uk/maths/people/fremlin/chap21.pdf#page=4
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=22
https://www1.essex.ac.uk/maths/people/fremlin/chap43.pdf#page=15
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=15
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=17
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=22
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=22
https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=26
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=25
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Proof. As standard probability spaces, 𝑋,𝑌, 𝑍 are all completions of Borel measures on Polish spaces. Let F ′,G′,H ′ be the Borel sets
given by the topologies on 𝑋,𝑌, 𝑍 respectively. Let𝑊 be the product space 𝑋 × 𝑌 with Borel sets K′ generated by rectangles 𝐹 ′ ×𝐺 ′ for
𝐹 ′ ∈ F ′,𝐺 ′ ∈ G′ as usual. This product is Polish because each of its factors are. Since 𝑓 , 𝑔 are maps of standard probability spaces, there

exist disintegrations {𝜇 |𝑧 }𝑧∈𝑍 and {𝜈 |𝑧 }𝑧∈𝑍 . Let 𝜏 ′ be the function K′ → [0, 1] defined by

𝜏 ′ (𝐾 ′) =
∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧) (𝐾 ′) 𝜌 (d𝑧),

a probability measure because each 𝜇 |𝑧 ⊗ 𝜈 |𝑧 is. Let (𝑊,K, 𝜏) be the completion of (𝑊,K′, 𝜏 ′), standard because 𝜏 ′ is a measure on a Polish

space by construction. Let ℎ and 𝑘 be the projections 𝜋1 and 𝜋2 respectively. These maps are measure-preserving: for all 𝐹 ∈ F and 𝐺 ∈ G,

𝜏 (ℎ−1 (𝐹 )) = 𝜌 (𝐹 × 𝑌 ) =
∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧) (𝐹 × 𝑌 ) 𝜌 (d𝑧) =

∫
𝜇 |𝑧 (𝐹 )𝜈 |𝑧 (𝑌 ) 𝜌 (d𝑧) =

∫
𝜇 |𝑧 (𝐹 ) 𝜌 (d𝑧) = 𝜇 (𝐹 )

𝜏 (𝑘−1 (𝐺)) = 𝜌 (𝑋 ×𝐺) =
∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧) (𝑋 ×𝐺) 𝜌 (d𝑧) =

∫
𝜇 |𝑧 (𝑋 ) × 𝜈 |𝑧 (𝐺) 𝜌 (d𝑧) =

∫
𝜈 |𝑧 (𝐺) 𝜌 (d𝑧) = 𝜈 (𝐺)

Finally, the square commutes almost-surely:

Pr

(𝑥,𝑦)∼𝜏
[𝑓 (ℎ(𝑥,𝑦)) = 𝑔(𝑘 (𝑥,𝑦))] =

∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧) ({(𝑥,𝑦) | 𝑓 𝑥 = 𝑔𝑦}) 𝜌 (d𝑧)

=

∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧)

(⊎
𝑧′
(𝑓 −1 (𝑧′) × 𝑔−1 (𝑧′))

)
𝜌 (d𝑧)

=

∫
𝑧∈𝜆
(𝜇 |𝑧 ⊗ 𝜈 |𝑧)

(
(𝑓 −1 (𝑧) × 𝑔−1 (𝑧)) ∩

⊎
𝑧′
(𝑓 −1 (𝑧′) × 𝑔−1 (𝑧′))

)
𝜌 (d𝑧) because (𝜇 |𝑧 ⊗ 𝜈 |𝑧) (𝑓 −1 (𝑧) × 𝑔−1 (𝑧)) = 1 for a.a. 𝑧

=

∫
(𝜇 |𝑧 ⊗ 𝜈 |𝑧) (𝑓 −1 (𝑧) × 𝑔−1 (𝑧)) 𝜌 (d𝑧) = 1

□

B.2 Standard enhanced measurable spaces and measurable algebras
Given a standard probability space (𝑋, F , 𝜇), one can choose to forget everything about the measure 𝜇 except for which measurable subsets

are negligible, leaving behind a tuple (𝑋, F ,N) where N is a 𝜎-ideal of F . Given two standard probability spaces (𝑋, F , 𝜇) and (𝑌,G, 𝜈)
where 𝜇 has negligibles N and 𝜈 has negligiblesM, and given a morphism [𝑓 ] : (𝑋, F , 𝜇) → (𝑌,G, 𝜈) of standard probability spaces, one

can choose to forget everything about the fact that [𝑓 ] is measure-preserving except for the fact that 𝜈 (𝐺) = 0 iff 𝜇 (𝑓 −1 (𝐺)) = 0, leaving

behind an equivalence class [𝑓 ] with 𝑓 −1 (𝐺) ∈ N iff 𝐺 ∈ M for all 𝐺 ∈ G. (Note this is well-defined, as only the negligible sets are needed

to determine whether two morphisms 𝑓 , 𝑓 ′ are almost-surely equal.) This idea is made precise as follows.

Definition B.16 (standard enhanced measurable space). An enhanced measurable space is a tuple (𝑋, F ,N) for which there exists a measure

𝜇 with negligibles N such that (𝑋, F , 𝜇) is a probability space. A standard enhanced measurable space is an enhanced measurable space for

which there exists a measure 𝜇 making it a standard probability space.

Definition B.17 (negligible-preserving, negligible-reflecting). Given two standard measurable spaces (𝑋, F ,N) and (𝑌,G,M), say a

measurable map 𝑓 : (𝑋, F ) → (𝑌,G) is negligible-reflecting if 𝑓 −1 (𝑀) ∈ N for all𝑀 ∈ M and negligible-preserving if 𝑓 −1 (𝐺) ∈ N implies

𝐺 ∈ M for all 𝐺 ∈ G.

Definition B.18 (map of standard enhanced measurable spaces). Given two standard enhanced measurable spaces (𝑋, F ,N) and (𝑌,G,M),
a map of standard enhanced measurable spaces from (𝑋, F ,N) to (𝑌,G,M) is a measurable map 𝑓 : (𝑋, F ) → (𝑌,G) that is both negligible-

preserving and negligible-reflecting, quotiented by almost-sure equality: 𝑓 =a.s. 𝑔 iff {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ≠ 𝑔(𝑥)} ∈ N .

Definition B.19 (the category EMS
std

). Let EMS
std

be the category of standard enhanced measurable spaces and maps between them.

The following gives a more concrete picture of what kinds of (equivalence classes of) maps live in EMS
std

: they can be equivalently seen

as those maps that induce injective complete-boolean-algebra homomorphisms, and as measure-preserving maps that have forgotten the

fact that they were measure-preserving.

Lemma B.20. Let (𝑋, F ,N)
𝑓
−→ (𝑌,G,M) be a negligible-reflecting map of enhanced measurable spaces. The following are equivalent:

(1) 𝑓 is a EMS
std

-map from (𝑋, F ,N) to (𝑌,G,M)
(2) 𝑓 is negligible-preserving

(3) The complete-boolean-algebra homomorphism F/N
alg(𝑓 )
←−−−−− G/M described in Construction B.11 is injective

(4) There exist measures 𝜇 on F and 𝜈 on G with negligibles N andM respectively such that 𝑓 is a Prob
std

-map (𝑋, F , 𝜇) → (𝑌,G, 𝜈)
Proof.
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• (1) ⇔ (2). By definition.

• (2) ⇒ (3). If 𝑓 is negligible-preserving then alg(𝑓 ) [𝐸] = ⊥ implies [𝐸] = ⊥, so alg(𝑓 ) has trivial kernel.
• (3) ⇒ (4). If alg(𝑓 ) : F/N ←↪ G/M is an injective complete-boolean-algebra homomorphism, then unforgetting a standard proba-

bility measure 𝜇 on (𝑋, F ,N) gives a standard probability space (𝑋, F , 𝜇) and corresponding measure algebra (F /N , 𝜇); restricting
𝜇 along the injective homomorphism alg(𝑓 ) gives a measure algebra (G/M, 𝜈) making alg(𝑓 ) a measure-algebra homomorphism

(F /N , 𝜇) ←↪ (G/M, 𝜈). Define 𝜇 : F → [0, 1] by 𝜇𝐸 = 𝜇 [𝐸]. This is a measure, since 𝜇∅ = 𝜇 [∅] = 𝜇⊥ = 0 and if {𝐸𝑖 }𝑖 is a countable
disjoint family of events then 𝜇 (⊎𝑖 𝐸𝑖 ) = 𝜇 [

⊎
𝑖 𝐸𝑖 ] = 𝜇 (

⊎
𝑖 [𝐸𝑖 ]) =

∑
𝑖 𝜇 [𝐸𝑖 ] =

∑
𝑖 𝜇𝐸𝑖 , Moreover, 𝜇 has negligiblesM, since if 𝑁 ∈ M

then 𝜇𝑁 = 𝜇 [𝑁 ] = 𝜇⊥ = 0, and conversely if 𝜇𝐸 = 𝜇 [𝐸] = 0 then [𝐸] = ⊥ so 𝐸 ∈ M. To show (𝑌,G, 𝜈) standard, unforget a collection
of Borel sets G′ arising from a Polish topology on 𝑌 and a measure 𝜆 making (𝑌,G, 𝜆) into a standard probability space, with 𝜆 the

completion of the Borel measure 𝜆 |G′ . The measure 𝜇 is correspondingly the completion of the Borel measure 𝜇 |G′ because 𝜆 |G′ and
𝜇 |G′ have the same Borel-negligibles [19, 212E(d)], so (𝑌,G, 𝜈) standard.
• (4) ⇒ (2). Any measure-preserving map is negligible-preserving.

□

Definition B.21. Let U : Prob
std
→ EMS

std
be the forgetful functor that sends a standard probability space (𝑋, F , 𝜇) to the standard

enhanced measurable space (𝑋, F , negligibles(𝜇)) and a Prob
std

-map [𝑓 ] : (𝑋, F , 𝜇) → (𝑌,G, 𝜈) to itself (now considered as a negligible-

preserving-and-reflecting map of standard enhanced measurable spaces).

Lemma B.22. The category EMS
std

is the image of U: the functor U is surjective on objects, and any morphism of standard enhanced

measurable spaces arises from a measure-preserving map equipping those spaces with standard probability measures.

Proof. The object part follows by definition of standard enhanced measurable space. The morphism part is (1)⇒(4) of Lemma B.20. □

Just as there is an equivalence Prob
std
≃ ProbAlgop

std
(Lemma B.12), there is an equivalence between EMS

std
and a category of measure

algebras that have forgotten their measures.

Definition B.23 (measurable algebra). Ameasurable algebra is a complete boolean algebra 𝔄 for which there exists a measure 𝜇 : 𝔄 → [0, 1]
making (𝔄, 𝜇) a probability algebra.

As with the definition of measure algebra, we deviate slightly from Fremlin [19, 391B(a)] in requiring measurable algebras to be complete

as boolean algebras.

Definition B.24 (standard measurable algebra). Call a measurable algebra standard if there exists a measure 𝜇 on it that makes it into a

standard probability algebra.

Definition B.25 (the categoryMbleAlg
std

). LetMbleAlg
std

be the category of standard measurable algebras and injective complete-boolean-

algebra homomorphisms.

Lemma B.26. The operation alg defines a functor EMS
std
→ MbleAlgop

std
witnessing an equivalence EMS

std
≃ MbleAlgop

std
.

Proof. Forgetting about the parts of Constructions B.5 and B.11 to do with measures makes alg a functor of the required type. The proof

that this functor is an equivalence is analogous to the proof of Lemma B.12. □

Corollary B.27. Every morphism in EMS
std

is epi.

Proof. Combine (1)⇒(3) from Lemma B.20 and Lemma B.26. □

Construction B.28. Suppose (𝑋, F ,N) ∈ EMS
std

and (𝑌,G, 𝜈) ∈ Prob
std

. Suppose 𝑓 : (𝑋, F ,N) → U(𝑌,G, 𝜈), or in other words

that 𝑓 is a measurable map (𝑋, F ) → (𝑌,G) such that 𝑓 −1 (𝐺) ∈ N iff 𝜈 (𝐺) = 0. The function 𝑓 −1𝜈 : 𝑓 −1G → [0, 1] defined on the

pullback 𝜎-algebra 𝑓 −1G := {𝑓 −1 (𝐺) | 𝐺 ∈ G} by 𝑓 −1𝜈 (𝑓 −1 (𝐺)) = 𝜈 (𝐺) is a probability measure, and 𝑓 is measure-preserving as a map

(𝑋, 𝑓 −1G, 𝑓 −1𝜈) → (𝑌,G, 𝜈).

Proof. The function 𝑓 −1𝜈 is well-defined: if 𝑓 −1 (𝐺) = 𝑓 −1 (𝐺 ′) for some 𝐺,𝐺 ′ ∈ G, then 𝑓 −1 (𝐺△𝐺 ′) = ∅ ∈ N , so 𝜈 (𝐺△𝐺 ′) = 0, so

𝜈 (𝐺) = 𝜈 (𝐺 ′). It indeed defines a measure, because 𝜈 is a measure and taking 𝑓 -preimages preserves the empty set and complements and

distributes over countable disjoint unions. Finally, 𝑓 is measure-preserving by definition of 𝑓 −1𝜈 . □

Note B.29. The probability space (𝑋, 𝑓 −1G, 𝑓 −1𝜈) is not necessarily standard: for example, if 𝑓 is the map (𝑥 ↦→ [𝑥 < 1/2]) : [0, 1] → {⊤,⊥}
and {⊤,⊥} is given the uniform measure, then 𝑓 −1G is the atomic 𝜎-algebra on [0, 1] generated by [0, 1/2) and [1/2, 1] and 𝑓 −1𝜈 assigns
each atom probability 1/2. The triple (𝑋, 𝑓 −1G, 𝑓 −1𝜈) is not a standard probability space because its measure algebra has two atoms but

there is no bijection from it onto the two-point space.

Lemma B.30. For (𝑋, F ,N) ∈ EMS
std

and (𝑌,G, 𝜈) ∈ Prob
std

and 𝑓 : (𝑋, F ,N) → U(𝑌,G, 𝜈), there exists a measure 𝜇 extending 𝑓 −1𝜈
making (𝑋, F , 𝜇) into a standard probability space with negligibles N and 𝑓 into a measure-preserving map (𝑋, F , 𝜇) → (𝑌,G, 𝜈).

https://www1.essex.ac.uk/maths/people/fremlin/chap21.pdf#page=11
https://www1.essex.ac.uk/maths/people/fremlin/chap39.pdf#page=2
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Proof. Unforget a measure 𝜆 with negligibles N such that (𝑋, F , 𝜆) is a standard probability space. The measure 𝑓 −1𝜈 : 𝑓 −1G → [0, 1]
is absolutely continuous with respect to the restriction 𝜆 |𝑓 −1G of 𝜆 to the pullback 𝜎-algebra 𝑓 −1G: if 𝑓 −1𝜈 (𝑓 −1 (𝐺)) = 𝜈 (𝐺) = 0 then

𝑓 −1 (𝐺) ∈ N , so 𝜇 (𝑓 −1 (𝐺)) = 0. Thus 𝑓 −1𝜈 has a Radon-Nikodym derivative 𝑔 : (𝑋, 𝑓 −1G) → R. Since 𝑓 −1G ⊆ F , the derivative 𝑔 is also
measurable as a function (𝑋,G) → R. Let 𝜇 be the measure F → [0, 1] defined by 𝜇 (𝐹 ) =

∫
[𝑥 ∈ 𝐹 ]𝑔(𝑥) 𝜆(d𝑥) for all 𝐹 ∈ F . This extends

𝑓 −1𝜈 , and so makes 𝑓 measure-preserving as a map (𝑋, F , 𝜇) → (𝑌,G, 𝜈).
All that’s left is to show (𝑋, F , 𝜇) standard with negligibles N . Since 𝑔 is measurable as a function (𝑋, 𝑓 −1G) → R, there must be some

𝐺 ∈ G with {𝑥 | 𝑔(𝑥) = 0} = 𝑔−1 (0) = 𝑓 −1 (𝐺). This 𝐺 must be 𝜈-negligible, since

𝜈 (𝐺) = 𝑓 −1𝜈 (𝑓 −1 (𝐺)) =
∫
[𝑓 (𝑥) ∈ 𝐺]𝑔(𝑥) 𝜆𝑓 −1G (d𝑥) =

∫
[𝑔(𝑥) = 0]𝑔(𝑥) 𝜆𝑓 −1G (d𝑥) = 0.

Since 𝑓 is negligible-reflecting, this implies 𝑓 −1 (𝐺) = {𝑥 | 𝑔(𝑥) = 0} is 𝜆-negligible, so the derivative 𝑔 is 𝜆-almost-everywhere strictly

positive. This implies 𝜈 (𝐹 ) =
∫
[𝑥 ∈ 𝐹 ]𝑔(𝑥) 𝜆(d𝑥) = 0 iff 𝜆(𝐹 ) = 0, so 𝜆 and 𝜇 have the same negligible setsN . Finally, unforget a collection of

Borel sets F ′ arising from a Polish topology on 𝑋 such that 𝜆 is the completion of the Borel measure 𝜆 |F′ . The measure 𝜇 is correspondingly

the completion of the Borel measure 𝜇 |F′ because 𝜆 |F′ and 𝜇 |F′ have the same Borel-negligibles [19, 212E(d)], so (𝑋, F , 𝜇) standard. □

The following lemma can also be proved via a mild strengthening of Wendt [54, Definition 3.1].

Lemma B.31. The category EMS
std

has the right Ore property: for 𝑓 , 𝑔 with types as shown below, there exists a space𝑊 and maps ℎ, 𝑘

such that 𝑓 ℎ = 𝑔𝑘 :

(𝑊,K,S) (𝑌,G,M)

(𝑋, F ,N) (𝑍,H ,R)
ℎ

𝑘

𝑔

𝑓

Proof. By (1)⇒(4) of Lemma B.20, there exist measures 𝜇 and 𝜌 with negligibles N and R respectively making 𝑓 a Prob
std

-map from

(𝑋, F , 𝜇) to (𝑍,H , 𝜌). By Lemma B.30 there exists a measure 𝜈 with negligiblesM making (𝑌,G, 𝜈) a standard probability space and 𝑔 a

Prob
std

-map from (𝑌,G, 𝜈) to (𝑍,H , 𝜌). The result follows by applying Lemma B.15 and forgetting all measures. □

B.2.1 Semicartesian structure of EMS
std

.

Fact B.32 (semicartesian structure of Prob
std

). The category Prob
std

of standard probability spaces andmeasure-preservingmaps is symmetric

semicartesian monoidal. The symmetric monoidal product of two standard probability spaces (𝑋, F , 𝜇) and (𝑌,G, 𝜈) has underlying set𝑋 ×𝑌
with 𝜎-algebra generated by rectangles 𝐹 ×𝐺 for 𝐹 ∈ F ,𝐺 ∈ G, and probability measure defined by (𝜇⊗𝜈) (𝐸) =

∬
[(𝑥,𝑦) ∈ 𝐸] d𝜇 (𝑥)d𝜈 (𝑦) [2,

Definition 5.25]. This preserves standardness [42, p. 37, §2.7]. The unit is the one-point probability space.

The fact that EMS
std

is the image of U (Lemma B.22) suggests the semicartesian symmetric monoidal structure on EMS
std

ought to be the

image of the corresponding structure on Prob
std

. This is indeed the case, as we now show.

Lemma B.33. Let 𝑋 be an object of EMS
std

and 𝑋1, 𝑋2 two objects in Prob
std

that forget to it (i.e., U𝑋1 = U𝑋2 = 𝑋 ). Similarly let 𝑌 be an

object of EMS
std

and 𝑌1, 𝑌2 two objects of Prob
std

with U𝑌1 = U𝑌2 = 𝑌 . Then the monoidal products 𝑋1 ⊗ 𝑌1 and 𝑋2 ⊗ 𝑌2 forget to the same

standard enhanced measurable space: U(𝑋1 ⊗ 𝑌1) = U(𝑋2 ⊗ 𝑌2).

Proof. Both 𝑋1 ⊗ 𝑌1 and 𝑋2 ⊗ 𝑌2 have the same underlying set (given by set-theoretic product) and 𝜎-algebra (generated by rectangles),

so all that’s left is to show that the measures on 𝑋1 ⊗ 𝑌1 and 𝑋2 ⊗ 𝑌2 have the same negligible sets. Let 𝜇𝑋1
be the measure on 𝑋1 and 𝜇𝑋2

the measure on 𝑋2. Since U(𝑋1) = U(𝑋2) = 𝑋 , the measures 𝜇𝑋1
and 𝜇𝑋2

have the same negligibles, so 𝜇𝑋2
is absolutely continuous with

respect to 𝜇𝑋1
and has a Radon-Nikodym derivative 𝑓 : 𝑋 → R. The derivative 𝑓 can be taken to be strictly positive: being a derivative forces

𝑓 >𝜇𝑋1
-a.e. 0, in or other words that 𝐸 = {𝑥 | 𝑓 (𝑥) = 0} is 𝜇𝑋1

-negligible, for otherwise we would have 𝜇𝑋2
(𝐸) =

∫
[𝑥 ∈ 𝐸] 𝑓 (𝑥) d𝜇𝑋1

(𝑥) = 0

contradicting the hypothesis that 𝜇𝑋1
and 𝜇𝑋2

have the same negligible sets. Running the same argument onU(𝑌1) = U(𝑌2) = 𝑌 shows 𝜇𝑌2 has

a strictly positive Radon-Nikodym derivative 𝑔 : 𝑋 → R with respect to 𝜇𝑋1
. Therefore the product measure 𝜇𝑋2

⊗ 𝜇𝑌2 has Radon-Nikodym
derivative ℎ(𝑥,𝑦) = 𝑓 (𝑥)𝑔(𝑦) with respect to product measure 𝜇𝑋1

⊗ 𝜇𝑌1 , strictly positive because 𝑓 , 𝑔 are, and by Fubini’s theorem

(𝜇𝑋2
⊗ 𝜇𝑌2 ) (𝐸) =

∬
[(𝑥,𝑦) ∈ 𝐸] d𝜇𝑋2

(𝑥)d𝜇𝑌2 (𝑦) =
∬
[(𝑥,𝑦) ∈ 𝐸] 𝑓 (𝑥)𝑔(𝑦) d𝜇𝑋1

(𝑥)d𝜇𝑌1 (𝑦)

is zero exactly when (𝜇𝑋1
⊗ 𝜇𝑌1 ) (𝐸) is, as required. □

Definition B.34 (tensor product of standard enhanced measurable spaces). The tensor product of standard enhanced measurable spaces 𝑋,𝑌 ,

written 𝑋 ⊗ 𝑌 , is defined to be U(𝑋 ′ ⊗Prob
std

𝑌 ′). where 𝑋 ′ and 𝑌 ′ are arbitrary standard probability spaces with U(𝑋 ′) = 𝑋 and U(𝑌 ′) = 𝑌 .
This is well-defined by Lemma B.33: the choice of 𝑋 ′, 𝑌 ′ does not matter.

This operation extends to a functor −1 ⊗ −2 : EMS
std
× EMS

std
→ EMS

std
: given EMS

std
-maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝐴→ 𝐵, pick arbitrary

𝑋 ′, 𝑌 ′ ∈ Prob
std

with U(𝑋 ′) = 𝑋 and U(𝑌 ′) = 𝑌 making 𝑓 into a Prob
std

-morphism (which exist by Lemma B.22) and similarly pick 𝐴′, 𝐵′
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for 𝑔, then set 𝑓 ⊗𝑔 to be the map U(𝑓 ⊗Prob
std

𝑔) : 𝑋 ⊗𝐴→ 𝑌 ⊗𝐵. The choice of𝑋 ′, 𝑌 ′, 𝐴′, 𝐵′ doesn’t matter because U faithful. Functoriality

follows from functoriality of ⊗Prob
std

.

Lemma B.35. The category EMS
std

is semicartesian monoidal with symmetric monoidal product (⊗).

Proof. The associator, unitor, and swapping map are the images under U of their counterparts in Prob
std

(Fact B.32). The coherence

diagrams commute because they are the image under U of the corresponding diagrams for ⊗Prob
std

. □

B.3 Subalgebras with enough room
Throughout this section, when we say “subalgebra” we mean what Fremlin [19] calls “closed subalgebra”. There are two possible meanings

for the word “closed”, one order-theoretic and one topological, but thankfully the two coincide in our situation: Fremlin [19, 323H] shows

“closed” has a canonical meaning for localizable (hence also for probability) algebras. We will use the order-theoretic definition, so a closed

subalgebra is a boolean subalgebra closed under all small joins [19, 313D(a)].

Definition B.36 (enough room). Say a subalgebra ℭ of [0, 1] has enough room if every standard probability algebra is isomorphic to a

subalgebra𝔇 of 𝔄 such that ℭ and𝔇 are stochastically independent [19, 325L].

Intuition B.37. A subalgebra ℭ of [0, 1] having enough room is analogous to Lilac’s requirement that sub-𝜎-algebras of the Hilbert cube

have finite footprint [29, Definition 2.6]. The main idea is that, if [0, 1] is to be an inexhaustible source of randomness, then a given subalgebra

must be small enough that one can always allocate fresh (i.e., stochastically independent) standard probability algebras inside of it.

Note B.38. We have a lot of freedom in how we choose to picture the measure algebra [0, 1]. As a measure algebra, it is isomorphic to

[0, 1]2 (the Lebesgue measure on the unit square) and [0, 1/2] × [0, 1/2] and [0, 1/3] × [0, 2/3] (where × is the simple product of measure

algebras, so that these algebras correspond to the disjoint union of two intervals) and so on. Because of this, in pictures below [0, 1] may be

drawn as any of these spaces.

B.3.1 A subalgebra with enough room.

Example B.39. Let 𝔄 be the probability algebra given by the Lebesgue measure on the unit square [0, 1]2. Let ℭ be the subalgebra

generated by the projection 𝜋1 : [0, 1]2 → [0, 1], corresponding to the sub-𝜎-algebra consisting of rectangles of the form 𝐹 × [0, 1] for 𝐹 a

Lebesgue-measurable subset of [0, 1]. The subalgebra ℭ has enough room, because any standard probability algebra can be embedded as a

subalgebra of 𝔄 corresponding to a sub-𝜎-algebra consisting of rectangles of the form [0, 1] × 𝐹 ′.

B.3.2 Characterizing subalgebras with enough room. We now formalize the intuitions sketched in the above example, and characterize the

subalgebras with enough room.

Lemma B.40. Let ℭ be a subalgebra of a measure algebra (𝔄, 𝜇) and 𝑎 an element of 𝔄 with nontrivial measure (so 𝜇 (𝑎) ∉ {0, 1}) that
is independent of ℭ in the sense that 𝜇 (𝑎 ∩ 𝑐) = 𝜇 (𝑎)𝜇 (𝑐) for all 𝑐 in ℭ. Then 𝑎 is incomparable with every element of ℭ; that is, for all 𝑐

nontrivial in ℭ we have neither 𝑎 ⊆ 𝑐 nor 𝑎 ⊇ 𝑐 .

Proof. If 𝑎 ⊆ 𝑐 for some nontrivial 𝑐 then 𝜇 (𝑎) = 𝜇 (𝑎 ∩ 𝑐) = 𝜇 (𝑎)𝜇 (𝑐) forcing 𝜇 (𝑐) = 0 or 𝜇 (𝑎) = 1, impossible because 𝑎, 𝑐 nontrivial.

Similarly, if 𝑎 ⊇ 𝑐 for some nontrivial 𝑐 then 𝜇 (𝑐) = 𝜇 (𝑎 ∩ 𝑐) = 𝜇 (𝑎)𝜇 (𝑐) forcing 𝜇 (𝑎) = 0 or 𝜇 (𝑐) = 1, impossible because 𝑎, 𝑐 nontrivial. □

Lemma B.41. A subalgebra ℭ of [0, 1] has enough room iff there exists a subalgebra𝔇 isomorphic to [0, 1] with ℭ,𝔇 independent.

Proof. If ℭ has enough room then there certainly is an independent subalgebra isomorphic to [0, 1], since [0, 1] is a standard probability

algebra. Conversely, any standard probability algebra𝔉 can be embedded as subalgebra of [0, 1], so if ℭ is independent of𝔇 isomorphic to

[0, 1] then the subalgebra of𝔇 corresponding to𝔉 is also independent of ℭ. □

Lemma B.42. If ℭ has enough room and 𝔅 ⊆ ℭ then 𝔅 has enough room.

Proof. There exists𝔇 with𝔇 � [0, 1] and ℭ,𝔇 independent, so 𝔅,𝔇 independent, so 𝔅 has enough room by Lemma B.41. □

Lemma B.43. If ℭ has enough room and 𝜋 is an automorphism of [0, 1] then 𝜋ℭ has enough room.

Proof. There exists 𝔇 with 𝔇 � [0, 1] and ℭ,𝔇 independent, so 𝜋ℭ, 𝜋𝔇 independent and 𝜋𝔇 � [0, 1], so 𝜋𝔅 has enough room by

Lemma B.41. □

Lemma B.44. If a subalgebra ℭ of 𝔄 has enough room then for any standard probability algebra there exists a subalgebra𝔇 isomorphic to

it and independent of ℭ such that the subalgebra generated by ℭ,𝔇 still has enough room.
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Proof. Since ℭ has enough room, there is a copy of [0, 1]2 embedded in 𝔄 independent of ℭ. Any standard probability space can be

embedded as a subalgebra𝔇 of [0, 1], hence as a subalgebra𝔇 ⊗̂ ⊤ of [0, 1]2 = [0, 1] ⊗̂ [0, 1] [19, 325F], where ⊗̂ is the localizable measure

algebra free product [19, 325E]. By associativity of independent subalgebras [19, 272K] [19, 325X(g)] this implies the subalgebra generated

by ℭ,𝔇 is independent of the subalgebra ⊤ ⊗̂ [0, 1] � [0, 1] of the copy of [0, 1]2 embedded in ℭ. Thus we have found 𝔇 such that the

subalgebra generated by ℭ,𝔇 is independent of a copy of [0, 1], which implies the subalgebra generated by ℭ,𝔇 has enough room by

Lemma B.41. □

Lemma B.45. If ℭ ⊆ [0, 1] has enough room, then [0, 1] is relatively atomless over ℭ [19, 331A].

Proof. Since ℭ has enough room, there is a subalgebra𝔇 of [0, 1] with𝔇 � [0, 1] and ℭ,𝔇 independent. Let ⟨ℭ,𝔇⟩ be the subalgebra
generated by ℭ and 𝔇. Since 𝔇 � [0, 1], there is an isomorphism 𝜋 : ⟨ℭ,𝔇⟩ � ℭ ⊗̂ 𝔇 � ℭ ⊗̂ [0, 1] [19, 325L]. Under this isomorphism,

elements 𝑐 of ℭ look like rectangles 𝜋𝑐 ⊗̂ ⊤[0,1] , and the image of 𝜋 is the subalgebra {𝑐 ⊗̂ ⊤ | 𝑐 ∈ [0, 1]} ⊆ ℭ ⊗̂ [0, 1] of all such rectangles.

The measure algebra ℭ ⊗̂ [0, 1] is relatively atomless over this subalgebra, because the principal ideal generated by any rectangle 𝑐 ⊗̂ ⊤
contains elements such as 𝑐 ⊗̂ [0, 1/2] that are not of the form (𝑐 ⊗̂ ⊤) ∩ (𝑑 ⊗̂ ⊤) for any 𝑑 . Thus ⟨ℭ,𝔇⟩ is relatively atomless over ℭ. Since

ℭ ⊆ ⟨ℭ,𝔇⟩ ⊆ [0, 1], this implies [0, 1] relatively atomless over ℭ [19, 331Y(a)]. □

Lemma B.46. If [0, 1] is ℭ-relatively atomless, then there is an isomorphism 𝜋 : [0, 1] → ℭ ⊗̂ [0, 1] with 𝜋𝑐 = 𝑐 ⊗̂ ⊤[0,1] for all 𝑐 in ℭ.

Proof. Consider the decomposition

𝜋 : [0, 1] ∼−→
∏
𝑛∈N

ℭ𝑒𝑛 ×
∏
𝜅∈𝐾

ℭ𝑒𝜅 ⊗̂ 𝔅𝜅

for all 𝑐 in ℭ, 𝜋𝑐 = ((𝑐 ∩ 𝑒𝑛)𝑛∈N, ((𝑐 ∩ 𝑒𝜅 ) ⊗̂ ⊤𝔅𝜅
)𝜅∈𝐾 )

of [0, 1] with respect to ℭ given by Fremlin [19, 333K], where 𝔅𝜅 denotes the standard measure algebra on {0, 1}𝜅 [19, 333A(d)]. (We have

changed the notation slightly from the statement of this decomposition in Fremlin, writing ⊤𝔅𝜅
for the top element of the algebra 𝔅𝜅

instead of 1, to avoid confusion with the real number 1 in [0, 1].) As discussed in Fremlin [19, 333K(a)], each factor ℭ𝑒𝑛 corresponds to a

relative atom of [0, 1] over ℭ. Since [0, 1] is ℭ-relatively atomless, we must have 𝑒𝑛 = ⊥ for all 𝑛, so that the product

∏
𝑛 ℭ𝑒𝑛 disappears and

𝜋 can be rewritten as

𝜋 : [0, 1] ∼−→
∏
𝜅∈𝐾

ℭ𝑒𝜅 ⊗̂ 𝔅𝜅

for all 𝑐 in ℭ, 𝜋𝑐 = ((𝑐 ∩ 𝑒𝜅 ) ⊗̂ 1)𝜅∈𝐾

Each factor ℭ𝑒𝜅 ⊗̂ 𝔅𝜅 corresponds to a principal ideal of [0, 1] with Maharam type 𝜅 [19, 333G(a)]. The measure algebra [0, 1] is Maharam-

type-homogenous with Maharam type 𝜔 [19, 331K] [19, 254K], so does not have any principal ideals with Maharam type 𝜅 > 𝜔 [19, 331H(c)].

Thus, if 𝜋 is to be an isomorphism, we must have 𝐾 = {𝜔}, so the product

∏
𝜅 ℭ𝑒𝜅 ⊗̂ 𝔅𝜅 reduces to ℭ𝑒𝜔 ⊗̂ 𝔅𝜔 . Moreover, the measure

algebra 𝔅𝜔 is isomorphic to [0, 1] [19, 254K]. Thus 𝜋 can be rewritten as

𝜋 : [0, 1] ∼−→ ℭ𝑒𝜔 ⊗̂ [0, 1]
for all 𝑐 in ℭ, 𝜋𝑐 = (𝑐 ∩ 𝑒𝜔 ) ⊗̂ ⊤[0,1]

Finally, the fact that 𝜋 preserves measure forces 𝜇 (𝑒𝜔 ) = 1; this in turn forces 𝑒𝜔 to have measure 1, and so 𝑒𝜔 = ⊤ℭ . Thus

𝜋 : [0, 1] ∼−→ ℭ ⊗̂ [0, 1]
for all 𝑐 in ℭ, 𝜋𝑐 = 𝑐 ⊗̂ ⊤[0,1]

as claimed. □

Lemma B.47. If there is an isomorphism 𝜋 : [0, 1] → ℭ ⊗̂ [0, 1] with 𝜋𝑐 = 𝑐 ⊗̂ ⊤[0,1] for all 𝑐 in ℭ, then ℭ has enough room.

Proof. The subalgebra ⊤ℭ ⊗̂ [0, 1] generated by rectangles ⊤ℭ ⊗̂ 𝑎 for 𝑎 in [0, 1] is isomorphic to [0, 1] and independent of ℭ ⊗̂ ⊤[0,1] .
Transporting back along 𝜋 gives a subalgebra 𝜋−1 (⊤ℭ ⊗̂ [0, 1]) of [0, 1] independent of ℭ, so ℭ has enough room by Lemma B.41. □

Theorem B.48 (characterization of subalgebras with enough room). The following are equivalent:

(1) ℭ ⊆ [0, 1] has enough room

(2) There is an isomorphism 𝜋 : [0, 1] → ℭ ⊗̂ [0, 1] with 𝜋𝑐 = 𝑐 ⊗̂ ⊤[0,1] for all 𝑐 in ℭ

(3) [0, 1] is ℭ-relatively atomless

Proof. Lemma B.45, Lemma B.46, and Lemma B.47 give the cycle 1⇒ 2⇒ 3⇒ 1. □
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Intuition B.49. Theorem B.48 says subalgebras with enough room have a very nice form: up to measure-algebra isomorphism, they

are projections out of a product space with an interval’s worth of independence available for allocating fresh randomness. Also, the

characterization based on relative-atomlessness shows that the idea of having enough room does not depend on measures in an essential

way, as relative-atomlessness is purely a property of the underlying Boolean algebras.

B.4 Automorphisms of the interval
Lemma B.50. If [0, 1] is relatively atomless over a subalgebra ℭ, then 𝜏ℭ𝑎

( [0, 1]𝑎) = 𝜔 for all 𝑎 ≠ ⊥ in [0, 1].

Proof. Relative atomlessness implies 𝜏ℭ𝑎
[0, 1]𝑎 ≥ 𝜔 for all 𝑎 ≠ ⊥ in [0, 1] [19, 333B(d)], and

𝜏ℭ𝑎
[0, 1]𝑎

333B(a)

≤ 𝜏ℭ [0, 1]
333B(e)

≤ 𝜏 [0, 1] 331K+254K= 𝜔.

□

Lemma B.51. Let 𝔄 be a subalgebra of [0, 1] considered as a measurable algebra. If [0, 1] is 𝔄-relatively atomless, then there exists a

measurable-algebra isomorphism 𝜋 : [0, 1] → 𝔄 ⊗̂ [0, 1] such that 𝜋𝑎 = 𝑎 ⊗̂ ⊤[0,1] for all 𝑎 in 𝔄.

Proof. Put the usual Lebesgue measure 𝜆 on [0, 1], rendering 𝔄 a closed sub-measure-algebra of the measure algebra ( [0, 1], 𝜆), apply
Lemma B.46 to get a measure algebra isomorphism 𝜋 : ( [0, 1], 𝜆) → (𝔄, 𝜆 |𝔄) ⊗̂ ( [0, 1], 𝜆) with 𝜋𝑎 = 𝑎 ⊗̂ ⊤[0,1] for all 𝑎 in 𝔄, and then forget

all the measures and the fact that 𝜋 preserves them. □

Lemma B.52 (Homogeneity). Let 𝔄,𝔅 be standard probability subalgebras of [0, 1] that render it relatively atomless. Let 𝑓 : 𝔅 ↩→ 𝔄

be an injective order-continuous Boolean algebra homomorphism. There exists an order-continuous Boolean algebra automorphism

𝜋 : [0, 1] → [0, 1] refining 𝑓 in the sense that 𝜋𝑏 = 𝑓 𝑏 for all 𝑏 in 𝔅. In other words, the diagram

[0, 1] [0, 1]

𝔄 𝔅

𝜋

𝑓

commutes, where the vertical arrows are the inclusions 𝔄 ⊆ [0, 1] and 𝔅 ⊆ [0, 1].

Proof. Give [0, 1] in the top-left corner the usual Lebesgue measure 𝜆. Since 𝑓 and the inclusion 𝔄 ⊆ [0, 1] are injective, restricting 𝜆
along these gives measures 𝜇, 𝜈 such that

( [0, 1], 𝜆)

(𝔄, 𝜇) (𝔅, 𝜈)
𝑓

is a diagram in ProbAlg
std

, the category of standard probability algebras and measure-algebra homomorphisms. By Lemma B.51, there exists

an order-continuous Boolean algebra isomorphism 𝜋 : [0, 1] → 𝔅 ⊗̂ [0, 1] such that the triangle

𝔅 ⊗̂ [0, 1] [0, 1]

𝔅

𝜋

−⊗̂⊤[0,1]

commutes. The homomorphism − ⊗̂ ⊤[0,1] is measure-preserving as a map (𝔅, 𝜈) → (𝔅, 𝜈) ⊗̂ ( [0, 1], 𝜆), since

(𝜈 ⊗̂ 𝜆) (𝑏 ⊗̂ ⊤[0,1] ) = 𝜈𝑏 · 𝜆⊤[0,1] = 𝜈𝑏

for all 𝑏 in 𝔅. Therefore it fits in with the other ProbAlg
std

-diagram above to give the following ProbAlg
std

-diagram:

( [0, 1], 𝜆) (𝔅, 𝜈) ⊗̂ ( [0, 1], 𝜆)

(𝔄, 𝜇) (𝔅, 𝜈)
𝑓

−⊗̂⊤[0,1]

This diagram can be completed into a commutative quadrilateral. Note that [0, 1] is𝔄-relatively atomless and (𝔅, 𝜈) ⊗̂ ( [0, 1], 𝜆) is𝔅-relatively

atomless, and (𝔅, 𝜈) ⊗̂ ( [0, 1], 𝜆) has countable Maharam type [19, 333G(a)] because 𝔅 standard and so has at-most-countable Maharam
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type. Therefore, the same argument as in Lemma B.50 gives 𝜏[0,1]𝑎 ( [0, 1]) = 𝜏 (𝔅⊗̂ [0,1] )𝑏 ⊗̂⊤ (𝔅 ⊗̂ [0, 1]) = 𝜔 for all 𝑎 in [0, 1] and 𝑏 in𝔅. Now

Fremlin [19, 333C(b)] gives a measure algebra isomorphism 𝜎 completing the above diagram into a commutative quadrilateral:

( [0, 1], 𝜆) (𝔅, 𝜈) ⊗̂ ( [0, 1], 𝜆)

(𝔄, 𝜇) (𝔅, 𝜈)

𝜎

𝑓

−⊗̂⊤[0,1]

Forgetting all measures and combining this quadrilateral with the triangle above gives the following commutative rectangle of measurable

algebras:

[0, 1] 𝔅 ⊗̂ [0, 1] [0, 1]

𝔄 𝔅

𝜎 𝜋

𝑓

−⊗̂⊤

The composite 𝜎𝜋 is an automorphism of the form required. □

Lemma B.53 (Correspondence). For ℭ ⊆ [0, 1], let Fixℭ be the subgroup of AutEMS
std
[0, 1] consisting of autos fixing every 𝑐 in ℭ:

Fixℭ := {𝜋 | 𝜋𝑐 = 𝑐 for all 𝑐 ∈ ℭ}.
If [0, 1] is ℭ-relatively atomless and Fixℭ ⊆ Fix𝔇, then𝔇 ⊆ ℭ.

Proof. If every EMS
std

-auto fixing ℭ fixes𝔇, then surely every Prob
std

-auto fixing ℭ fixes𝔇. Now suppose for contradiction that there

exists𝑑 in𝔇 not inℭ, with aim to construct a Prob
std

-auto fixingℭ but not𝑑 . By Theorem B.48, there is an isomorphism 𝜎 : [0, 1] → ℭ ⊗̂ [0, 1]
such that 𝜎𝑐 = 𝑐 ⊗̂ ⊤[0,1] for all 𝑐 in ℭ. By Fremlin [19, 333R(ii)⇒(iii)], ℭ arises as the fixed-point subalgebra of a particular automorphism

𝜋 : [0, 1] ∼−→ [0, 1], so that 𝑐 ∈ ℭ iff 𝜋𝑐 = 𝑐 . Since 𝑑 ∉ ℭ we must have 𝜋𝑑 ≠ 𝑑 , so 𝜋 is an auto of the form required. □

B.5 The target practice lemma
Lemma B.54. Let 𝔅 be a standard measurable algebra, 𝔄 ⊆ 𝔅 a standard measurable subalgebra, and 𝑏 an element of 𝔅 not in 𝔄. There

exists a standard measurable algebra ℭ and homomorphisms of standard measurable algebras 𝑓 , 𝑔 : 𝔅 ↩→ ℭ such that 𝑓 |𝔄 = 𝑔|𝔄 and

𝑓 (𝑏) ∉ im𝑔.

Proof. Let 𝑙 be the largest element of 𝔄 contained in 𝑏 and 𝑢 the smallest element of 𝔄 containing 𝑏:

𝑙 :=
∨

𝔄∋𝑎≤𝑏
𝑎 𝑢 :=

∧
𝔄∋𝑎≥𝑏

𝑎

These exist and are elements of 𝔄 because 𝔄 is a complete boolean algebra. Since 𝑏 is not in 𝔄, neither 𝑙 nor 𝑢 can be equal to it. Thus 𝑏 is

sandwiched between 𝑙 and 𝑢 by a sequence of strict inequalities 𝑙 < 𝑏 < 𝑢.

Consider an arbitrary 𝑎 in 𝔄 less than 𝑢 − 𝑙 . Any such 𝑎 can be decomposed into a disjoint union 𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 with 𝑎𝑢−𝑏 ≤ 𝑢 − 𝑏 and

𝑎𝑏−𝑙 ≤ 𝑏 − 𝑙 , by setting 𝑎𝑢−𝑏 := 𝑎 ∧ (𝑢 − 𝑏) and 𝑎𝑏−𝑙 := 𝑎 ∧ (𝑏 − 𝑙). The following diagram depicts the situation (and explains the lemma’s

name):

𝑢

𝑏

𝑙
𝑎𝑏−𝑙 𝑎𝑢−𝑏

The idea is to make use of the following fact: for any 𝑎 in 𝔄 that is nonzero (i.e., 𝑎 ≠ ⊥), both 𝑎𝑢−𝑏 and 𝑎𝑏−𝑙 as shown above must be nonzero

too. For if 𝑎𝑢−𝑏 = ⊥ and 𝑎𝑏−𝑙 nonzero, then 𝑎𝑏−𝑙 + 𝑙 would be an element of 𝔄 contained in 𝑏 and larger than 𝑙 , contradicting 𝑙 maximal.

Symmetrically, if 𝑎𝑏−𝑙 = ⊥ and 𝑎𝑢−𝑏 nonzero, then 𝑢 − 𝑎𝑢−𝑏 would be an element of 𝔄 containing 𝑏 and smaller than 𝑢, contradicting

𝑢 minimal. This property — that nonzero elements of 𝔄 contained in the annulus 𝑢 − 𝑙 depicted above decompose into disjoint unions

https://www1.essex.ac.uk/maths/people/fremlin/chap33.pdf#page=22
https://www1.essex.ac.uk/maths/people/fremlin/chap33.pdf#page=35


A Nominal Approach to Probabilistic Separation Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 with 𝑎𝑢−𝑏 , 𝑎𝑏−𝑙 both nonzero — distinguishes elements of 𝔄 from 𝑏, since 𝑏 ∧ (𝑢 − 𝑏) = ⊥. The idea of the proof is to construct

maps 𝑓 , 𝑔 making this difference visible, allowing to separate the element 𝑏 from the subalgebra 𝔄.

To do this, we first formulate the above remarks in terms of boolean algebras. The sequence of inequalities 𝑙 < 𝑏 < 𝑢 gives a partition of

unity {¬𝑢,𝑢 − 𝑏,𝑏 − 𝑙, 𝑙}, which gives a decomposition of 𝔅 as a simple product of principal ideals 𝔅 � 𝔅¬𝑢 ×𝔅𝑢−𝑏 ×𝔅𝑏−𝑙 ×𝔅𝑙 . Since 𝑙
and 𝑢 are both in the subalgebra 𝔄, it decomposes similarly as 𝔄 � 𝔄¬𝑢 × 𝔄𝑢−𝑙 × 𝔄𝑙 . The inclusion 𝔄 ⊆ 𝔅 decomposes correspondingly

into three inclusions of principal ideals:

𝔄¬𝑢 ⊆ 𝔅¬𝑢 𝔄𝑢−𝑙 ⊆ 𝔅𝑢−𝑏 ×𝔅𝑏−𝑙 𝔄𝑙 ⊆ 𝔅𝑙

Let 𝑖 be the inclusion 𝔄𝑢−𝑙 ⊆ 𝔅𝑢−𝑏 ×𝔅𝑏−𝑙 . As a homomorphism into a product of boolean algebras, 𝑖 can be written uniquely as

𝑖 = (𝑖𝑢−𝑏 , 𝑖𝑏−𝑙 ) for some complete-boolean-algebra homomorphisms

𝑖𝑢−𝑏 : 𝔄𝑢−𝑙 → 𝔅𝑢−𝑏
𝑖𝑏−𝑙 : 𝔄𝑢−𝑙 → 𝔅𝑏−𝑙

The earlier discussion shows that 𝑖𝑢−𝑏 (𝑎) and 𝑖𝑏−𝑙 (𝑎) are both nonzero for all nonzero 𝑎 ∈ 𝔄𝑢−𝑙 . More is true: the homomorphisms 𝑖𝑢−𝑏 , 𝑖𝑏−𝑙
are injective. To see that 𝑖𝑢−𝑏 is injective, pick arbitrary 𝑎, 𝑎′ ∈ 𝔄𝑢−𝑙 with 𝑖𝑢−𝑏 (𝑎) = 𝑖𝑢−𝑏 (𝑎′). Unwinding definitions, this is equivalent to
saying 𝑎𝑢−𝑏 = 𝑎′

𝑢−𝑏 , where 𝑎 decomposes as 𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 and 𝑎′ as 𝑎′𝑢−𝑏 + 𝑎
′
𝑏−𝑙 . This forces 𝑎𝑏−𝑙 = 𝑎

′
𝑏−𝑙 and hence 𝑎 = 𝑎′ showing 𝑖𝑢−𝑏

injective, for otherwise 𝑎 − 𝑎′ = (𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 ) − (𝑎′𝑢−𝑏 + 𝑎
′
𝑏−𝑙 ) = 𝑎𝑏−𝑙 − 𝑎

′
𝑏−𝑙 would be an element of 𝔄𝑢−𝑙 contained entirely in 𝑏 − 𝑙 ,

contradicting 𝑙 maximal. An analogous argument shows 𝑖𝑏−𝑙 injective.
Since 𝑖𝑢−𝑏 , 𝑖𝑏−𝑙 are injective complete-boolean-algebra homomorphisms and therefere homomorphisms of standard measurable alge-

bras, they correspond by Lemma B.26 to maps of standard enhanced measurable spaces with common codomain. By Lemma B.31, this

cospan completes to a commutative square. Passing this square back through Lemma B.26 gives a standard measurable algebra ℭ𝑢−𝑙 and
homomorphisms 𝑗, 𝑘 fitting into the following commutative square:

𝔄 𝔅𝑢−𝑏

𝔅𝑏−𝑙 ℭ𝑢−𝑙

𝑖𝑏−𝑙

𝑖𝑢−𝑏

𝑗

𝑘

All ingredients needed to construct 𝑓 , 𝑔 are now at hand. Let ℭ be the standard measurable algebra 𝔅¬𝑢 × (ℭ𝑢−𝑙 ⊗̂ [0, 1]) ×𝔅𝑙 . Let 𝑝, 𝑞 be
the injective homomorphisms ℭ𝑢−𝑙 × ℭ𝑢−𝑙 ↩→ ℭ𝑢−𝑙 ⊗̂ [0, 1] defined by the following equations:

𝑝 (𝑐1, 𝑐2) = (𝑐1 ⊗̂ [0, 1/2]) + (𝑐2 ⊗̂ [1/2, 1])
𝑞(𝑐1, 𝑐2) = (𝑐1 ⊗̂ [0, 1/3]) + (𝑐2 ⊗̂ [1/3, 1])

Let 𝑓 , 𝑔 : 𝔅 ↩→ ℭ be the following composites (note the only difference in their definitions is whether 𝑝 or 𝑞 is used at the end):

𝑓 =

(
𝔅
∼−→ 𝔅¬𝑢 ×𝔅𝑢−𝑏 ×𝔅𝑏−𝑙 ×𝔅𝑙

1× 𝑗×𝑘×1
↩−−−−−−−→ 𝔅¬𝑢 × (ℭ𝑢−𝑙 × ℭ𝑢−𝑙 ) ×𝔅𝑙

1×𝑝×1
↩−−−−−→ 𝔅¬𝑢 × (ℭ ⊗̂ [0, 1]) ×𝔅𝑙 = ℭ

)
𝑔 =

(
𝔅
∼−→ 𝔅¬𝑢 ×𝔅𝑢−𝑏 ×𝔅𝑏−𝑙 ×𝔅𝑙

1× 𝑗×𝑘×1
↩−−−−−−−→ 𝔅¬𝑢 × (ℭ𝑢−𝑙 × ℭ𝑢−𝑙 ) ×𝔅𝑙

1×𝑞×1
↩−−−−−→ 𝔅¬𝑢 × (ℭ ⊗̂ [0, 1]) ×𝔅𝑙 = ℭ

)
Since every element 𝑥 of𝔅 decomposes into a disjoint union 𝑥¬𝑢 +𝑥𝑢−𝑏 +𝑥𝑏−𝑙 +𝑥𝑙 for some 𝑥¬𝑢 ∈ 𝔅¬𝑢 and 𝑥𝑢−𝑏 ∈ 𝔅𝑢−𝑏 and 𝑥𝑏−𝑙 ∈ 𝔅𝑏−𝑙
and 𝑥𝑙 ∈ 𝔅𝑙 , the action of 𝑓 and 𝑔 on arbitrary elements of 𝔅 can be described by the following equations:

𝑓 (𝑥¬𝑢 + 𝑥𝑢−𝑏 + 𝑥𝑏−𝑙 + 𝑥𝑙 ) = (𝑥¬𝑢 , ( 𝑗 (𝑥𝑢−𝑏 ) ⊗̂ [0, 1/2]) + (𝑘 (𝑥𝑏−𝑙 ) ⊗̂ [1/2, 1]), 𝑥𝑙 )
𝑔(𝑥¬𝑢 + 𝑥𝑢−𝑏 + 𝑥𝑏−𝑙 + 𝑥𝑙 ) = (𝑥¬𝑢 , ( 𝑗 (𝑥𝑢−𝑏 ) ⊗̂ [0, 1/3]) + (𝑘 (𝑥𝑏−𝑙 ) ⊗̂ [1/3, 1]), 𝑥𝑙 )

We now verify 𝑓 , 𝑔 have the desired property. First 𝑓 , 𝑔 agree on the subalgebra 𝔄: for any 𝑎 in 𝔄, it holds that 𝑗 (𝑎𝑢−𝑏 ) = 𝑘 (𝑎𝑏−𝑙 ) because
the square 𝑗𝑖𝑢−𝑏 = 𝑘𝑖𝑏−𝑙 commutes, so

𝑓 (𝑎¬𝑢 + 𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 + 𝑎𝑙 ) = (𝑎¬𝑢 , ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [0, 1/2]) + (𝑘 (𝑎𝑏−𝑙 ) ⊗̂ [1/2, 1]), 𝑎𝑙 )
= (𝑎¬𝑢 , ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [0, 1/2]) + ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [1/2, 1]), 𝑎𝑙 )
= (𝑎¬𝑢 , 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ ( [0, 1/2] + [1/2, 1]), 𝑎𝑙 )
= (𝑎¬𝑢 , 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ ⊤, 𝑎𝑙 )
= (𝑎¬𝑢 , 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ ( [0, 1/3] + [1/3, 1]), 𝑎𝑙 )
= (𝑎¬𝑢 , ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [0, 1/3]) + ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [1/3, 1]), 𝑎𝑙 )
= (𝑎¬𝑢 , ( 𝑗 (𝑎𝑢−𝑏 ) ⊗̂ [0, 1/3]) + (𝑘 (𝑎𝑏−𝑙 ) ⊗̂ [1/3, 1]), 𝑎𝑙 )
= 𝑔(𝑎¬𝑢 + 𝑎𝑢−𝑏 + 𝑎𝑏−𝑙 + 𝑎𝑙 ) .
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Second, 𝑓 (𝑏) ∉ im𝑔: every element in the image of 𝑔 is of the form

(𝑥¬𝑢 , ( 𝑗 (𝑥𝑢−𝑏 ) ⊗̂ [0, 1/3]) + (𝑘 (𝑥𝑏−𝑙 ) ⊗̂ [1/3, 1]), 𝑥𝑙 )

but

𝑓 (𝑏) = 𝑓 (⊥ + ⊥ + (𝑏 − 𝑙) + 𝑙)
= (⊥, ( 𝑗 (⊥) ⊗̂ [0, 1/2]) + (𝑘 (⊤𝔅𝑏−𝑙 ) ⊗̂ [1/2, 1]),⊤𝔅𝑙

)
= (⊥, (⊥ ⊗̂ [0, 1/2]) + (⊤ ⊗̂ [1/2, 1]),⊤)
= (⊥,⊤ ⊗̂ [1/2, 1],⊤)

and there are no 𝑥𝑢−𝑏 , 𝑥𝑏−𝑙 such that ( 𝑗 (𝑥𝑢−𝑏 ) ⊗̂ [0, 1/3]) + (𝑘 (𝑥𝑏−𝑙 ) ⊗̂ [1/3, 1]) = ⊤ ⊗̂ [1/2, 1]. □

C GENERAL SHEAF THEORY
C.1 Atomic sheaves
Notation C.1. If 𝐹 is a presheaf on 𝐶 and 𝑓 : 𝑋 → 𝑌 a morphism in 𝐶 and 𝑦 ∈ 𝐹𝑌 , we will write 𝑦 · 𝑓 for the element 𝐹 (𝑓 ) (𝑦) ∈ 𝐹𝑋 .

Definition C.2 (𝑓 -invariance). Let 𝐹 be a presheaf on 𝐶 , 𝑦 ∈ 𝐹𝑑 an element of 𝐹 , and 𝑓 : 𝑑 → 𝑐 a morphism in 𝐶 . Following Simpson [47],

say 𝑦 is 𝑓 -invariant if for all 𝑔, ℎ : 𝑒 → 𝑑 with 𝑓 𝑔 = 𝑓 ℎ it holds that 𝑦 · 𝑔 = 𝑦 · ℎ. The following diagram illustrates the situation:

𝑦 · 𝑔 = 𝑦 · ℎ ∈ 𝐹𝑒 𝑦 ∈ 𝐹𝑑

𝑒 𝑑 𝑐
ℎ

𝑔 𝑓

Fact C.3. The atomic topology exists for𝐶 iff𝐶 satisfies the right Ore property: for any two morphisms 𝑓 : 𝑐 → 𝑒 and 𝑔 : 𝑑 → 𝑒 , there exists

an object 𝑏 and morphisms ℎ : 𝑏 → 𝑐 and 𝑘 : 𝑏 → 𝑑 such that

𝑏 𝑑

𝑐 𝑒

ℎ

𝑘

𝑔

𝑓

commutes [30, Example III.2(f), p.115].

Definition C.4 (atomic sheaf). Let 𝐶 be a category for which the atomic topology exists. A presheaf 𝐹 on 𝐶 is an atomic sheaf if and only if

it satisfies the following condition [30, Lemma III.4.2]: for all morphisms 𝑓 : 𝑑 → 𝑐 in 𝐶 , the function 𝐹 𝑓 is an inclusion 𝐹𝑐 ↩→ 𝐹𝑑 whose

image is the subset of 𝑓 -invariant elements of 𝐹𝑑 . More explicitly: for all morphisms 𝑓 : 𝑑 → 𝑐 and 𝑓 -invariant elements 𝑦 ∈ 𝐹𝑑 , there exists
a unique 𝑥 ∈ 𝐹𝑐 with 𝑦 = 𝑥 · 𝑓 .

C.2 Continuous group-invariant sets
Definition C.5 (category of 𝐺-sets). For 𝐺 a topological group, the category of continuous 𝐺-sets, written 𝐺 Set, is the category whose

objects are sets 𝑋 equipped with a continuous right action (·𝑋 ) : 𝑋 ×𝐺 → 𝑋 (where 𝑋 is given the discrete topology) and whose morphisms

from 𝑋 to 𝑌 are functions 𝑓 : 𝑋 → 𝑌 that are equivariant: 𝑓 (𝑥 ·𝑋 𝑔) = 𝑓 (𝑥) ·𝑌 𝑔 for all 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐺 .

Lemma C.6. For any topological group 𝐺 , there is an isomorphism of categories 𝐺 Set � 𝐺op Set.

Proof. Whereas objects of 𝐺 Set are sets 𝑋 equipped with a continuous right action (·) : 𝑋 × 𝐺 → 𝑋 , objects of 𝐺op Set are sets 𝑋
equipped with a continuous left action (·op) : 𝐺 ×𝑋 → 𝑋 . Every (𝑋, ·) ∈ 𝐺 Set corresponds to (𝑋, ·op) ∈ 𝐺op Set by setting 𝑔 ·op 𝑥 := 𝑥 ·𝑔−1.
(This is indeed a left action, since 𝑔 ·op ℎ ·op 𝑥 = 𝑥 · ℎ−1 · 𝑔−1 = 𝑥 · (𝑔ℎ)−1 = 𝑔ℎ ·op 𝑥 , and it is continuous because (·) and (·op) yield the

same stabilizer subgroups.) A morphism 𝑓 : (𝑋, ·𝑋 ) → (𝑌, ·𝑌 ) in𝐺 Set is a function 𝑓 : 𝑋 → 𝑌 satisfying 𝑓 (𝑥 ·𝑋 𝑔) = 𝑓 (𝑥) ·𝑌 𝑔 for all 𝑔 ∈ 𝐺 ,
which is equivalent to 𝑓 (𝑥 ·𝑋 𝑔−1) = 𝑓 (𝑥) ·𝑌 𝑔−1 for all 𝑔 ∈ 𝐺 , making 𝑓 also a morphism (𝑋, ·op

𝑋
) → (𝑌, ·op

𝑌
) in 𝐺op Set. □

C.3 Presheaves with minimal supports
Definition C.7 (category with minimal supports). A category 𝐶 has minimal supports if every coslice 𝑐/𝐶 has a terminal object. For any

object 𝑐 of 𝐶 , call the terminal object (𝑐∗, 𝑝 : 𝑐 → 𝑐∗) of 𝑐/𝐶 the support of 𝑐 . An object 𝑐 has trivial support or is trivially-supported if its

support is the identity map 1 : 𝑐 → 𝑐 .

Lemma C.8. If 𝐶 has minimal supports and 𝑐 has support 𝑝 : 𝑐 → 𝑐∗ and 𝑓 : 𝑐 → 𝑑 , then 𝑑 has support !𝑓 : 𝑑 → 𝑐∗ where !𝑓 is the unique

morphism 𝑓 → 𝑝 in 𝑐/𝐶 .
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Proof. Consider the following diagram.

𝑐

𝑑 𝑐∗

𝑒

𝑓 𝑝

𝑔
!𝑓

!𝑔𝑓

The upper triangle depicts the situation given: 𝑑 has support 𝑝 , and, because 𝑝 terminal in 𝑐/𝐶 , there exists a unique map !𝑓 making the

upper triangle commute in 𝐶 . To see that the map !𝑓 is the terminal object of 𝑑/𝐶 , fix an arbitrary object 𝑔 of 𝑑/𝐶 as shown. Because 𝑝

terminal in 𝑐/𝐶 , there exists a unique !𝑔𝑓 such that the outer quadrilateral commutes. The composite !𝑔𝑓 𝑔 is just as good as !𝑓 when it comes

to making the upper triangle commute, so uniqueness of !𝑓 implies the lower triangle commutes. Uniqueness of !𝑔𝑓 in making the lower

triangle commute then follows from its uniqueness in making the quadrilateral commute. □

Lemma C.9. If 𝐶 has minimal supports and 𝑐 has support 𝑝 : 𝑐 → 𝑐∗, then 𝑐∗ has support 1 : 𝑐∗ → 𝑐∗. Thus every object of 𝐶 has a map to

an object with trivial support.

Proof. Set 𝑓 = 𝑝 in Lemma C.8; have !𝑝 = 1𝑐∗ by uniqueness of !𝑝 in making the triangle !𝑝𝑝 = 𝑝 commute. □

Lemma C.10. If 𝐶 has minimal supports and 𝑐 has support 𝑝 : 𝑐 → 𝑐∗ and 𝑓 : 𝑑 → 𝑐 , then 𝑑 has support 𝑝𝑓 : 𝑑 → 𝑐∗. In particular, if 𝑐 has

trivial support then any map 𝑓 : 𝑑 → 𝑐 supports 𝑑 .

Proof. Consider the following diagram.

𝑑

𝑐 𝑑∗

𝑐∗

𝑓 𝑞

𝑝

!𝑓

The solid arrows depict the situation given: 𝑐 has support 𝑝 and 𝑓 : 𝑑 → 𝑐 , and, since 𝐶 supported, 𝑑 has some support 𝑞 : 𝑑 → 𝑑∗. To
show 𝑝𝑓 supports 𝑑 , it suffices to show 𝑝𝑓 � 𝑞 as objects of 𝑑/𝐶 . By Lemma C.8, the unique map !𝑓 making the upper triangle commute is

a support for 𝑐 . Thus !𝑓 and 𝑝 are both supports for 𝑐; thus !𝑓 � 𝑝 as objects of 𝑐/𝐶 , and there exists the unlabelled dashed isomorphism

making the lower triangle commute. Since both the upper and lower triangles commute, the whole diagram commutes, and the dashed

isomorphism gives 𝑓 � 𝑞 in 𝑑/𝐶 as desired. □

Lemma C.11. If 𝐶 has minimal supports and contains only epis, and 𝑐 has trivial support, then every 𝑓 : 𝑐 → 𝑑 is an isomorphism.

Proof. Since 1 : 𝑐 → 𝑐 terminal in 𝑐/𝐶 , there is a unique 𝑔 : 𝑑 → 𝑐 with 𝑔𝑓 = 1, so 𝑓 epi and a left inverse, so 𝑓 iso. □

Definition C.12 (presheaf with minimal supports). Say a presheaf 𝐹 on𝐶 has minimal supports if its category of elements El(𝐹 ) is a category
with minimal supports. Unwinding definitions, 𝐹 has minimal supports if for every 𝑥 : 𝐹𝑐 there exists 𝑥∗ : 𝐹𝑐∗ and 𝑝 : 𝑐 → 𝑐∗ with 𝑥 = 𝑥∗ · 𝑝
such that for all 𝑥 ′ : 𝐹𝑐′ and 𝑝′ : 𝑐 → 𝑐′ with 𝑥 = 𝑥 ′ · 𝑝 , there exists a unique 𝑞 : 𝑐′ → 𝑐∗ with 𝑥 ′ = 𝑥∗ · 𝑞 and 𝑝 = 𝑞𝑝′. As a terminal object,

(𝑐∗, 𝑥∗, 𝑝) is unique up to unique isomorphism, which in this case means unique mod (𝑐∗, 𝑥∗, 𝑝) ∼ (𝑐♯, 𝑥∗ · 𝑖, 𝑖−1𝑝) for all isomorphisms

𝑖 : 𝑐♯ → 𝑐∗.

Intuition C.13. For sheaves on a category of measurable spaces, a sheaf 𝐹 is supported if every element 𝑥 : 𝐹Ω can be expressed in terms

of a “smallest sample space” Ω∗. This sample space is not necessarily unique—any two-point space will do for modelling a boolean random

variable, for example—but is unique up to unique isomorphism of measurable spaces.

Note C.14. This notion of support is related to the one presented in Staton [50, Section 4.4.1]: a sheaf with minimal supports as defined

here corresponds, under the terminology there, to a sheaf for which every element has a least support.

Lemma C.15. For any category 𝐶 and object 𝑐 of 𝐶 , the representable presheafょ𝑐 has minimal supports.

Proof. Fix 𝑓 : 𝐶 (𝑥, 𝑐). The morphism (𝑓 : 𝐶 (𝑥, 𝑐))
𝑓
−→ (1 : 𝐶 (𝑐, 𝑐)) is terminal in 𝑓 /El(ょ𝑐). To see this, fix arbitrary (𝑓 : 𝐶 (𝑥, 𝑐))

𝑝
−→ (𝑔 :

𝐶 (𝑦, 𝑐)) with aim to find a unique dashed morphism making the following triangle commute in 𝑓 /El(ょ𝑐):

𝑓 : 𝐶 (𝑥, 𝑐)

𝑔 : 𝐶 (𝑦, 𝑐) 1 : 𝐶 (𝑐, 𝑐)

𝑝 𝑓

!𝑝
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Such a dashed arrow !𝑝 must satisfy 1 ◦ !𝑝 = 𝑔, forcing !𝑝 = 𝑔. It only remains to check !𝑝 makes the triangle commute; this follows from the

fact that 𝑝 is a morphism from 𝑓 to 𝑔 in El(ょ𝑐). □

Definition C.16. For 𝑈 : 𝐷 → 𝐶 a functor and 𝐺 an essentially small groupoid in 𝐷 , defineょ(𝑈𝐺) to be the presheaf colim𝑐∈𝐺ょ(𝑈𝑐),
whereょ is the Yoneda embedding. More explicitly, the action ofょ(𝑈𝐺) on objects is

ょ(𝑈𝐺) (𝑐) = {morphisms 𝑓 : 𝑐 → 𝑈𝑑 for 𝑑 in 𝐺}/∼
where (𝑓 : 𝑐 → 𝑈𝑑) ∼ (𝑔 : 𝑐 → 𝑈𝑒) if and only if𝑈 (𝜋) 𝑓 = 𝑔 for some 𝜋 : 𝑑 → 𝑒 in 𝐺 , and the action on morphisms is

ょ(𝑈𝐺) (𝑓 : 𝑐 → 𝑑) =
(
ょ(𝑈𝐺) (𝑑) →ょ(𝑈𝐺) (𝑐)
[𝑔 : 𝑑 → 𝑈𝑒] ↦→ [𝑔𝑓 : 𝑐 → 𝑈𝑒]

)
.

Definition C.17 (representables modulo a groupoid). For𝐶 any category and𝐺 a small groupoid in𝐶 , letょ𝐺 be the presheaf of representables
modulo 𝐺 . This is a specialization of Definition C.16 to the case𝑈 = 1𝐶 .

Lemma C.18. For𝑈 : 𝐷 → 𝐶 with 𝐶 a category of epis and 𝐺 a groupoid in 𝐷 , the presheafょ(𝑈𝐺) has minimal supports.

Proof. The proof is similar to Lemma C.15. Fix an equivalence class [𝑓 : 𝐶 (𝑥,𝑈𝑐)]. The morphism [𝑓 : 𝐶 (𝑥,𝑈𝑐)]
𝑓
−→ [1 : 𝐶 (𝑈𝑐,𝑈𝑐)]

is terminal in [𝑓 ]/El(ょ(𝑈𝐺)). To see this, fix arbitrary 𝑝 : 𝑥 → 𝑦 and [𝑓 : 𝐶 (𝑥,𝑈𝑐)]
𝑝
−→ [𝑔 : 𝐶 (𝑦,𝑈𝑑)] with aim to find a unique dashed

morphism making the following triangle commute in [𝑓 ]/El(ょ(𝑈𝐺)):

[𝑓 : 𝐶 (𝑥,𝑈𝑐)]

[𝑔 : 𝐶 (𝑦,𝑈𝑑)] [1 : 𝐶 (𝑈𝑐,𝑈𝑐)]

𝑝 𝑓

!𝑝

Unwinding definitions, this diagram says [𝑔] · 𝑝 = [𝑔𝑝] = [𝑓 ], so 𝑈 (𝜋)𝑔𝑝 = 𝑓 for some 𝜋 : 𝑑 → 𝑐 in 𝐺 . Commutativity of the above triangle

requires solving !𝑝𝑝 = 𝑓 for !𝑝 . Since 𝑝 epi and𝑈 (𝜋)𝑔𝑝 = 𝑓 , the composite𝑈 (𝜋)𝑔 is the only possible solution. It only remains to check that

setting !𝑝 := 𝑈 (𝜋)𝑔 gives a morphism in El(ょ(𝑈𝐺)) from [𝑔] to [1], and indeed [1] · !𝑝 = [1] ·𝑈 (𝜋)𝑔 = [𝑈 (𝜋)𝑔] = [𝑔]. □

C.4 The Day convolution of sheaves with minimal supports
In this section we describe conditions under which Day convolution preserves atomic sheaves.

Definition C.19 (tensor product of presheaves). Let (𝐶, ⊗, I) be a symmetric monoidal category. Given two presheaves 𝑃,𝑄 on 𝐶 , their Day
convolution [14] is defined by the following coend:

(𝑃 ⊗ 𝑄)𝑐 =
∫ 𝑐𝑃 ,𝑐𝑄 ∈𝐶

𝑃𝑐𝑃 ×𝑄𝑐𝑄 ×𝐶 (𝑐, 𝑐𝑃 ⊗ 𝑐𝑄 )

This product makes the category PSh(𝐶) of presheaves on 𝐶 into a symmetric monoidal category, with unitょI whereょ is the Yoneda

embedding.

The following lemma gives a concrete representation for the Day convolution of two atomic sheaves in the special case where the sheaves

have minimal supports and the base category is made only of epis.

Lemma C.20. Let (𝐶, ⊗, I) be a symmetric monoidal category of epis for which the atomic topology exists. If 𝐹 and𝐺 are atomic sheaves on

𝐶 with minimal supports, then 𝑖𝐹 ⊗ 𝑖𝐺 is the presheaf

(𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) =

©«

tuples (𝑐𝑥 , 𝑐𝑦, 𝑓 : 𝑐 → 𝑐𝑥 ⊗ 𝑐𝑦, 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦), abbreviated (𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦),
where 𝑥 and 𝑦 have trivial support, mod the equivalence relation

(𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦) ∼ (𝑔, 𝑎 : 𝐹𝑐𝑎, 𝑏 : 𝐺𝑐𝑏 )
iff there exist isos ℎ : 𝑐𝑎 → 𝑐𝑥 and 𝑘 : 𝑐𝑏 → 𝑐𝑦

such that 𝑓 = (ℎ ⊗ 𝑘)𝑔 and 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘

ª®®®®®®®¬
Proof. The Day convolution 𝑖𝐹 ⊗ 𝑖𝐺 is a presheaf that sends 𝑐 to

(𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) =
∫ 𝑐𝑥 ,𝑐𝑦

𝐶 (𝑐, 𝑐𝑥 ⊗ 𝑐𝑦) × 𝐹𝑐𝑥 ×𝐺𝑐𝑦

=

©«
tuples (𝑐𝑥 , 𝑐𝑦, 𝑓 : 𝑐 → 𝑐𝑥 ⊗ 𝑐𝑦, 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦), abbreviated (𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦),
mod the equivalence relation generated by

((𝑔 ⊗ ℎ) ◦ 𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦) ∼ (𝑓 , 𝑥 · 𝑔 : 𝐹𝑐′𝑥 , 𝑦 · ℎ : 𝐺𝑐′𝑦)
for all 𝑓 : 𝑐 → 𝑐′𝑥 ⊗ 𝑐′𝑦 and 𝑔 : 𝑐′𝑥 → 𝑐𝑥 and ℎ : 𝑐′𝑦 → 𝑐𝑦

ª®®®®®¬
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Since 𝐹 and 𝐺 have minimal supports, every element [𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦] of (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) (writing [−] for equivalence class) is of the form
[𝑓 , 𝑥∗ · 𝑝𝑥 : 𝐹𝑐∗𝑥 , 𝑦

∗ · 𝑝𝑦 : 𝐺𝑐∗𝑦] for some (𝑥∗, 𝑝𝑥 ) supporting 𝑥 and (𝑦∗, 𝑝𝑦) supporting 𝑦. This simplifies things: the elements 𝑥∗ and 𝑦∗

have support 1𝑐∗𝑥 and 1𝑐∗𝑦 by Lemma C.9, and [𝑓 , 𝑥∗ · 𝑝𝑥 , 𝑦∗ · 𝑝𝑦] = [(𝑝𝑥 ⊗ 𝑝𝑦) ◦ 𝑓 , 𝑥∗, 𝑦∗], so every element of (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) is of the form
[𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦] for some 𝑥 and 𝑦 whose supports are the identity maps 1𝑐𝑥 and 1𝑐𝑦 respectively:

(𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) =
(
trivially-supported tuples (𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦)
mod the equivalence relation generated by (∼) as above

)
Suppose two trivially-supported tuples (𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 :𝐺𝑐𝑦) and (𝑔, 𝑎 : 𝐹𝑐𝑎, 𝑏 :𝐺𝑐𝑏 ) are related by (∼), so there existℎ : 𝑐𝑎 → 𝑐𝑥 and 𝑘 : 𝑐𝑏 → 𝑐𝑦
such that

𝑓 = (ℎ ⊗ 𝑘)𝑔 and 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘.

The equation 𝑎 = 𝑥 ·ℎ corresponds to a morphism (𝑎 : 𝐹𝑐𝑎)
ℎ−→ (𝑥 : 𝐹𝑐𝑥 ) in El(𝐹 ). Now 𝑎 has support 1𝑐𝑎 by assumption and El(𝐹 ) contains

only epis because𝐶 does by hypothesis, so ℎ iso in El(𝐹 ) by Lemma C.11. This implies ℎ iso in𝐶 . Running the same argument on the equation

𝑏 = 𝑦 · 𝑘 gives 𝑘 iso in 𝐶 . Thus

(𝑓 , 𝑥,𝑦) ∼ (𝑔, 𝑎, 𝑏) ⇐⇒ there exist ℎ, 𝑘 iso such that 𝑓 = (ℎ ⊗ 𝑘)𝑔 and 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘 . (2)

This is an equivalence relation on trivially-supported tuples:

• Reflexivity: choose ℎ = 𝑘 = 1.

• Symmetry: if 𝑓 = (ℎ ⊗ 𝑘)𝑔 and 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘 , then (ℎ−1 ⊗ 𝑘−1) 𝑓 = 𝑔 and 𝑎 · ℎ−1 = 𝑥 and 𝑏 · 𝑘−1 = 𝑦, so if ℎ, 𝑘 witness

(𝑓 , 𝑥,𝑦) ∼ (𝑔, 𝑎, 𝑏) then ℎ−1, 𝑘−1 witness (𝑔, 𝑎, 𝑏) ∼ (𝑓 , 𝑥,𝑦).
• Transitivity: suppose (𝑓 , 𝑥,𝑦) ∼𝑝,𝑞 (𝑔, 𝑎, 𝑏) ∼𝑟,𝑠 (ℎ,𝑢, 𝑣), where the subscripts on ∼ indicate the witnesses for the given relation. This

gives

𝑓 = (𝑝 ⊗ 𝑞)𝑔 = (𝑝 ⊗ 𝑞) (𝑟 ⊗ 𝑠)ℎ = (𝑝𝑟 ⊗ 𝑞𝑠)ℎ
𝑢 = 𝑎 · 𝑟 = 𝑥 · 𝑝 · 𝑟 = 𝑥 · 𝑝𝑟
𝑣 = 𝑏 · 𝑠 = 𝑦 · 𝑞 · 𝑠 = 𝑦 · 𝑞𝑠

which together says (𝑓 , 𝑥,𝑦) ∼𝑝𝑟,𝑞𝑠 (ℎ,𝑢, 𝑣).
Thus the quotienting done by the coend in (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) is precisely a quotient by (∼) on trivially supported tuples, as claimed:

(𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) =
(
trivially-supported tuples (𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦)

)
/∼

□

Definition C.21 (semicartesian monoidal category). A monoidal category (𝐶, ⊗, I) is semicartesian if I is the terminal object of 𝐶 . This

implies the existence of projection maps fst : 𝑎 ⊗ 𝑏 → 𝑎 and snd : 𝑎 ⊗ 𝑏 → 𝑏, defined by the composites

fst =

(
𝑎 ⊗ 𝑏 1⊗!−−−→ 𝑎 ⊗ 1 � 𝑎 ⊗ I � 𝑎

)
snd =

(
𝑎 ⊗ 𝑏 !⊗1−−−→ 1 ⊗ 𝑏 � I ⊗ 𝑏 � 𝑎

)
where every occurrence of ! denotes the unique morphism into the terminal object.

Definition C.22 (category of supports). Call a symmetric semicartesian monoidal category (𝐶, ⊗, I) a category of supports if
• Every map in 𝐶 is epi;

• The two projection maps fst, snd are jointly monic: two maps 𝑓 , 𝑔 : 𝑐 → 𝑑 ⊗ 𝑒 are equal iff fst 𝑓 = fst𝑔 and snd 𝑓 = snd𝑔;

• The atomic topology exists for 𝐶;

• For every groupoid 𝐺 in 𝐶 , the presheaf of representables modulo 𝐺 is an atomic sheaf.

Lemma C.23. Let 𝐶 be a category of supports and 𝐹,𝐺 atomic sheaves on 𝐶 with minimal supports. The Day convolution for presheaves

𝑖𝐹 ⊗ 𝑖𝐺 is an atomic sheaf with minimal supports.

Proof. We use the concrete representation for 𝑖𝐹 ⊗ 𝑖𝐺 calculated in Lemma C.20.

• 𝑖𝐹 ⊗ 𝑖𝐺 is a sheaf: Fix 𝑝 : 𝑐′ → 𝑐 and an equivalence class [𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 :𝐺𝑐𝑦] : (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐′) of trivially-supported tuples that is

𝑝-invariant, so for all 𝑞, 𝑟 : 𝑐′′ → 𝑐′ satisfying 𝑝𝑞 = 𝑝𝑟 it holds that [𝑓 , 𝑥,𝑦] · 𝑞 = [𝑓 , 𝑥,𝑦] · 𝑟 . We are done if we can show that there

exists a unique extension of [𝑓 , 𝑥,𝑦] to an element [𝑔, 𝑎, 𝑏] of (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) such that [𝑔, 𝑎, 𝑏] · 𝑝 = [𝑓 , 𝑥,𝑦].
For any 𝑞 and 𝑟 , we have [𝑓 , 𝑥,𝑦] · 𝑞 = [𝑓 𝑞, 𝑥,𝑦] = [𝑓 𝑟, 𝑥,𝑦] = [𝑓 , 𝑥,𝑦] · 𝑟 iff (𝑓 𝑞, 𝑥,𝑦) ∼ (𝑓 𝑟, 𝑥,𝑦), iff there exist isos ℎ, 𝑘 with

𝑓 𝑞 = (ℎ ⊗ 𝑘) 𝑓 𝑟 and 𝑥 = 𝑥 · ℎ and 𝑦 = 𝑦 · 𝑘.
Thus 𝑝-invariance of [𝑓 , 𝑥,𝑦] says that for all 𝑞, 𝑟 with 𝑝𝑞 = 𝑝𝑟 it holds that 𝑓 𝑞 = (ℎ ⊗ 𝑘) 𝑓 𝑟 for some isos ℎ : 𝑐𝑥 → 𝑐𝑥 and 𝑘 : 𝑐𝑦 → 𝑐𝑦 .

This is precisely what it means for [𝑓 ]𝐺 to be 𝑝-invariant as an element of 𝐶 (𝑐′,𝐺), where𝐺 is the groupoid of isos of the form ℎ ⊗ 𝑘 .
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(Note ℎ and 𝑘 happen to be automorphisms here, but 𝐺 also contains non-automorphisms. This will be relevant later.) The presheaf

𝐶 (−,𝐺) is an atomic sheaf because 𝐶 is a category of supports, so there exist 𝑐′𝑥 and 𝑐′𝑦 and 𝑓 : 𝑐 → 𝑐′𝑥 ⊗ 𝑐′𝑦 with 𝑓 𝑝 ∼𝐺 𝑓 , unique

up to (∼𝐺 ). Existence of (𝑐′𝑥 , 𝑐′𝑦, 𝑓 ) is equivalent to the existence of a map 𝑓 : 𝑐 → 𝑐𝑥 ⊗ 𝑐𝑦 with 𝑓 𝑝 = 𝑓 : any tuple (𝑐′𝑥 , 𝑐′𝑦, 𝑓 ) with
𝑓 𝑝 = (ℎ ⊗ 𝑘) 𝑓 for some ℎ, 𝑘 in 𝐺 yields a map (ℎ−1 ⊗ 𝑘−1) 𝑓 with (ℎ−1 ⊗ 𝑘−1) 𝑓 𝑝 = 𝑓 , and conversely if 𝑓 𝑝 = 𝑓 then one has a tuple

(𝑐𝑥 , 𝑐𝑦, 𝑓 ) with 𝑓 𝑝 ∼𝐺 𝑓 .

The equivalence class [𝑓 , 𝑥,𝑦] is an element of (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐) satisfying [𝑓 , 𝑥,𝑦] · 𝑝 = [𝑓 , 𝑥,𝑦]. It only remains to show that it is the

unique such. Suppose [𝑔, 𝑎, 𝑏] · 𝑝 = [𝑔𝑝, 𝑎, 𝑏] = [𝑓 , 𝑥,𝑦], so (𝑓 , 𝑥,𝑦) ∼ (𝑔𝑝, 𝑎, 𝑏), so there exist isos ℎ, 𝑘 with

𝑓 = (ℎ ⊗ 𝑘)𝑔𝑝 and 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘.

Then (ℎ ⊗ 𝑘)𝑔𝑝 = 𝑓 = 𝑓 𝑝 , so (ℎ ⊗ 𝑘)𝑔 = 𝑓 by 𝑝 epi, so

[𝑔, 𝑎, 𝑏] = [𝑔, 𝑥 · ℎ,𝑦 · 𝑘] = [(ℎ ⊗ 𝑘)𝑔, 𝑥,𝑦] = [𝑓 , 𝑥,𝑦]

establishing uniqueness of [𝑓 , 𝑥,𝑦].
• 𝑖𝐹 ⊗ 𝑖𝐺 is has minimal supports: fix [𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 : 𝐺𝑐𝑦] : (𝑖𝐹 ⊗ 𝑖𝐺) (𝑐). We have [𝑓 , 𝑥,𝑦] = [1𝑐𝑥⊗𝑐𝑦 , 𝑥,𝑦] · 𝑓 , giving an object

[𝑓 , 𝑥,𝑦]
𝑓
−→ [1, 𝑥,𝑦] of [𝑓 , 𝑥,𝑦]/El(𝑖𝐹 ⊗ 𝑖𝐺). This object is terminal: fix arbitrary [𝑓 , 𝑥,𝑦]

𝑝
−→ [𝑔, 𝑎, 𝑏] with aim to find !𝑝 making

[𝑓 , 𝑥,𝑦]

[𝑔, 𝑎, 𝑏] [1, 𝑥,𝑦]

𝑝 𝑓

!𝑝

commute. Since 𝐶 is a category of epis and 𝑝 a morphism in 𝐶 , any dashed morphism completing this triangle must be unique, so it

only remains to find one such. Unpacking the arrow [𝑓 , 𝑥,𝑦]
𝑝
−→ [𝑔, 𝑎, 𝑏] gives the equations

𝑓 = (ℎ ⊗ 𝑘)𝑔𝑝 𝑎 = 𝑥 · ℎ 𝑏 = 𝑦 · 𝑘
Commutativity of the triangle requires !𝑝𝑝 = 𝑓 , which suggests setting !𝑝 = (ℎ⊗𝑘)𝑔. It only remains to check that [1, 𝑥,𝑦] · !𝑝 = [𝑔, 𝑎, 𝑏].
Indeed, [1, 𝑥,𝑦] · !𝑝 = [(ℎ ⊗ 𝑘)𝑔, 𝑥,𝑦] = [𝑔, 𝑥 · ℎ,𝑦 · 𝑘] = [𝑔, 𝑎, 𝑏].

□

Lemma C.24. Let 𝐶 be a category of supports and 𝐹,𝐺 atomic sheaves on 𝐶 with minimal supports. The natural transformation

𝑖 : 𝐹 ⊗𝐺 ↩→ 𝐹 ×𝐺
𝑖𝑐 [𝑓 , 𝑥 : 𝐹𝑐𝑥 , 𝑦 :𝐺𝑐𝑦] = (𝑥 · fst 𝑓 : 𝐹𝑐, 𝑦 · snd 𝑓 : 𝐺𝑐)

is a monic map of sheaves, making 𝐹 ⊗𝐺 a subobject of 𝐹 ×𝐺 .

Proof. Because 𝐹 and𝐺 have minimal supports, the sheaf tensor product 𝐹 ⊗𝐺 coincides with the presheaf tensor product (Lemma C.23).

The map 𝑖 is defined above on trivially-supported tuples; it respects the equivalence relation because

𝑖𝑐 [𝑓 , 𝑥 · ℎ,𝑦 · 𝑘] = (𝑥 · ℎ · fst 𝑓 , 𝑦 · 𝑘 · snd 𝑓 ) = (𝑥 · fst(ℎ ⊗ 𝑘) 𝑓 , 𝑦 · snd(ℎ ⊗ 𝑘) 𝑓 ] = 𝑖𝑐 [(ℎ ⊗ 𝑘) 𝑓 , 𝑥,𝑦] .
It is a natural transformation:

𝑖𝑐 [𝑓 𝑝, 𝑥,𝑦] = (𝑥 · fst 𝑓 𝑝,𝑦 · snd 𝑓 𝑝) = (𝑥 · fst 𝑓 , 𝑦 · snd 𝑓 ) · 𝑝 = 𝑖𝑐 [𝑓 , 𝑥,𝑦] · 𝑝

Finally, each component of 𝑖 is monic. Fix arbitrary trivially-supported [𝑓 , 𝑥,𝑦] and [𝑔, 𝑎, 𝑏] and suppose 𝑖𝑐 [𝑓 , 𝑥,𝑦] = 𝑖𝑐 [𝑔, 𝑎, 𝑏], so 𝑥 · fst 𝑓 =

𝑎 · fst𝑔 and 𝑦 · snd 𝑓 = 𝑏 · snd𝑔. This corresponds to the following diagrams in El(𝐹 ) and El(𝐺) respectively:

𝑥 · fst 𝑓 = 𝑎 · fst𝑔 𝑦 · snd 𝑓 = 𝑏 · snd𝑔

𝑥 𝑎 𝑦 𝑏

fst 𝑓 fst𝑔 snd 𝑓 snd𝑔

ℎ−1

ℎ

𝑘−1

𝑘

The solid arrows depict the situation given. Since both 𝑥 and 𝑎 have trivial support, the common value 𝑥 · fst 𝑓 = 𝑎 · fst𝑔 has both fst 𝑓 and fst𝑔
as supports by Lemma C.10. Any two supports for the same object are isomorphic, so fst 𝑓 � snd𝑔 in the slice category (𝑥 · fst 𝑓 )/El(𝐹 ), giving
ℎ,ℎ−1 making the triangle on the left commute. Analogously, snd 𝑓 and snd𝑔 are both supports for the common value 𝑦 · snd 𝑓 = 𝑏 · snd𝑔,
giving 𝑘, 𝑘−1 making the triangle on the right commute. Unpacking what it means forℎ and 𝑘 to be morphisms in El(𝐹 ) and El(𝐺) respectively
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gives 𝑎 = 𝑥 · ℎ and 𝑏 = 𝑦 · 𝑘 , so to get [𝑓 , 𝑥,𝑦] = [𝑔, 𝑎, 𝑏] it only remains to show 𝑓 = (ℎ ⊗ 𝑘)𝑔. Two maps 𝑐 → 𝑐𝑥 ⊗ 𝑐𝑦 are equal iff they are

equal when postcomposed with the projections fst and snd, and indeed

fst(ℎ ⊗ 𝑘)𝑔 = ℎ fst𝑔
(∗)
= fst 𝑓 and snd(ℎ ⊗ 𝑘)𝑔 = 𝑘 snd𝑔

(∗)
= snd 𝑓

where the equations marked (∗) follow from commutativity of the triangles above. □

C.5 Nominal situations
Definition C.25 (nominal situation). A nominal situation is a tuple (𝐶,𝐶∞, c∞ : 𝐶∞, (𝑖𝑐 : 𝑐 ↩→ c∞)𝑐 :𝐶 ,𝐺) where
• 𝐶 is a full subcategory of 𝐶∞
• 𝐶 and 𝐶∞ consist only of monic maps

• The atomic topology exists for 𝐶op

• 𝐺 is a subgroup of Aut(c∞)
• (Closure) The special monos 𝑖𝑐 hit every subobject of the form 𝜋𝑖𝑐 in c∞ with 𝜋 ∈ 𝐺 . That is, for every 𝑐 and auto 𝜋 ∈ 𝐺 there exists

an isomorphism 𝑓 : 𝑐
∼−→ 𝑐′ in 𝐶 with 𝜋𝑖𝑐 = 𝑖𝑐′ 𝑓 :

c∞ c∞

𝑐 𝑐′

𝜋

𝑖𝑐

𝑓

𝑖𝑐′

• (Homogeneity) For every map 𝑓 : 𝑐 ↩→ 𝑑 in 𝐶 there exists 𝜋 ∈ 𝐺 with 𝜋𝑖𝑐 = 𝑖𝑑 𝑓 :

c∞ c∞

𝑐 𝑑

𝜋

𝑖𝑐

𝑓

𝑖𝑑

• (Correspondence) The map

Fix 𝑖 := {𝜋 | 𝜋𝑖 = 𝑖} ⊆ 𝐺
that sends every mono 𝑖 : 𝑐 ↩→ c∞ to the subgroup of𝐺 fixing it gives an contravariant equivalence between subobjects of 𝑐∞ and

subgroups of 𝐺 fixing those subobjects. (This mapping is automatically faithful because its domain — the subobjects of c∞ — is a thin

category. The nontrivial part is the requirement that Fix be full, which is to say that if Fix 𝑖 ⊆ Fix 𝑗 then 𝑗 factors through 𝑖 , so that

the triangle

c∞

dom 𝑗 dom 𝑖

𝑗 𝑖

commutes.)

• (Cofinality) For every finite family of objects (𝑐 𝑗 ) 𝑗∈ 𝐽 in 𝐶 there exists an object 𝑐∗ in 𝐶 with Fix 𝑖𝑐∗ ⊆
⋂
𝑗 Fix 𝑖𝑐 𝑗 .

Definition C.26. In a nominal situation (𝐶,𝐶∞, c∞, 𝑖•,𝐺), say an automorphism 𝜋 ∈ 𝐺 refines a map 𝑓 : 𝑐 → 𝑑 if the following square

commutes:

c∞ c∞

𝑐 𝑑

𝜋

𝑖𝑐

𝑓

𝑖𝑑

In this language, Homogeneity says every map is refined by some automorphism.

Lemma C.27. Refinement respects composition: if 𝜋𝑓 refines 𝑓 : 𝑐 → 𝑑 and 𝜋𝑔 refines 𝑔 : 𝑑 → 𝑒 , then 𝜋𝑔𝜋𝑓 refines 𝑔𝑓 , and if 𝜋 refines an

iso 𝑓 then 𝜋−1 refines 𝑓 −1.

Proof. First, if 𝜋𝑓 refines 𝑓 and 𝜋𝑔 refines 𝑔 then pasting the respective commutative squares together gives the following commutative

rectangle witnessing 𝜋𝑔𝜋𝑓 refines 𝑔𝑓 :

c∞ c∞ c∞

𝑐 𝑑 𝑒

𝜋𝑓 𝜋𝑔

𝑓

𝑖𝑐 𝑖𝑑

𝑔

𝑖𝑒

Second, if 𝜋 refines 𝑓 : 𝑐 → 𝑑 iso then 𝜋𝑖𝑐 = 𝑖𝑑 𝑓 , so 𝑖𝑐 𝑓
−1 = 𝜋−1𝑖𝑑 , so 𝜋

−1
refines 𝑓 −1. □
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Definition C.28 (refinement topology). Let (𝐶,𝐶∞, c∞, 𝑖•,𝐺) be a nominal situation. For any iso 𝑓 : 𝑐
∼−→ 𝑑 in 𝐶 , let R 𝑓 be the collection of

all automorphisms in 𝐺 that refine 𝑓 :

R 𝑓 := {𝜋 : c∞
∼−→ c∞ | 𝜋𝑖𝑐 = 𝑖𝑑 𝑓 }

The refinement topology is the topology on 𝐺 consisting of unions of finite intersections of sets R 𝑓 for isos 𝑓 of 𝐶 .

Lemma C.29. In a nominal situation (𝐶,𝐶∞, c∞, 𝑖•,𝐺), the group 𝐺 is continuous for the refinement topology.

Proof. We show that the inverse and multiplication maps are continuous.

• Inverse is continuous: for all isos 𝑓 of 𝐶 ,

inverse
−1 (R 𝑓 ) = {𝜋 | 𝜋−1 ∈ R 𝑓 } = {𝜋 | 𝜋−1 refines 𝑓 } = {𝜋 | 𝜋 refines 𝑓 −1} = {𝜋 | 𝜋 ∈ R 𝑓 −1 } = R 𝑓 −1

so the preimage of every basis element is open.

• Multiplication is continuous: fix an iso 𝑓 of𝐶 and suppose (𝜎, 𝜋) ∈ mul
−1 (R 𝑓 ) with aim to find an open neighborhood O𝜎 × O𝜋 such

that (𝜎, 𝜋) ∈ O𝜎 × O𝜋 ⊆ mul
−1 (R 𝑓 ). By assumption 𝜎𝜋 refines 𝑓 , so

c∞ c∞ c∞

𝑐 𝑑

𝜋 𝜎

𝑖𝑐

𝑓

𝑖𝑑

commutes. By Closure, the subobject 𝜋𝑖𝑐 is isomorphic to 𝑖𝑐′ for some 𝑐′. That is, there exists an object 𝑐′ and isomorphism 𝑔 : 𝑐 → 𝑐′

such that

c∞ c∞

𝑐 𝑐′

𝜋

𝑖𝑐

𝑔

𝑖𝑐′

commutes. Combining this square with the rectangle above gives

c∞ c∞ c∞

𝑐 𝑑

𝑐′

𝜋 𝜎

𝑖𝑐

𝑓

𝑔

𝑖𝑑

𝑖𝑐′

𝑓 𝑔−1

where the back rectangle and the left quadrilateral commute. Since 𝑔 iso, the dashed arrow exists and makes the lower triangle

commute. By diagram chase, the right quadrilateral commutes when precomposed with𝑔; since𝑔 iso, this implies the right quadrilateral

commutes. This gives the following commutative rectangle:

c∞ c∞ c∞

𝑐 𝑐′ 𝑑

𝜋 𝜎

𝑖𝑐

𝑔

𝑖𝑐′

𝑓 𝑔−1

𝑖𝑑

Translating this rectangle into words, we have that 𝜋 refines 𝑔 and 𝜎 refines 𝑓 𝑔−1 and and 𝜎𝜋 refines 𝑓 . But note that for any other 𝜋 ′

and 𝜎′ we would still have 𝜎′𝜋 ′ refining 𝑓 so long as 𝜋 ′ refines 𝑔 and 𝜎′ refines 𝑓 𝑔−1. In other words,

(𝜎, 𝜋) ∈ R 𝑓 𝑔−1 × R𝑔 ⊆ mul
−1 (R 𝑓 )

and we have found a suitable open neighborhood as required.

□

Definition C.30. In a nominal situation (𝐶,𝐶∞, c∞, 𝑖•,𝐺), let Fix𝐶 be the category whose objects are subgroups Fix 𝑖𝑐 for all 𝑐 in 𝐶 and

whose morphisms Fix 𝑖𝑐 → Fix 𝑖𝑑 are cosets (Fix 𝑖𝑑 )𝜋 such that 𝜋𝑔𝜋−1 fixes 𝑖𝑑 for all 𝑔 ∈ 𝐺 that fix 𝑖𝑐 , with composition Fix 𝑖𝑐
(Fix 𝑖𝑑 )𝜋−−−−−−−→

Fix 𝑖𝑑
(Fix 𝑖𝑒 )𝜎−−−−−−−→ Fix 𝑖𝑒 given by (Fix 𝑖𝑒 )𝜎𝜋 .

Lemma C.31. For any nominal situation (𝐶,𝐶∞, c∞, 𝑖•,𝐺), there is an equivalence of categories 𝐶op ≃ Fix𝐶 .

Proof. We will construct a functor 𝐹 : 𝐶op → Fix𝐶 and show that it is full, faithful, and surjective on objects.

• Send 𝑐 in 𝐶 to Fix 𝑖𝑐 in Fix𝐶 .
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• Send 𝑓 : 𝑑 → 𝑐 in 𝐶 to (Fix 𝑖𝑑 )𝜋−1 : Fix 𝑖𝑐 → Fix 𝑖𝑑 in Fix𝐶 , where 𝜋 is an automorphism such that 𝜋𝑖𝑑 = 𝑖𝑐 𝑓 , guaranteed to exist by

Homogeneity. This automorphism is indeed a map Fix 𝑖𝑐 → Fix 𝑖𝑑 , because if 𝑔 fixes 𝑖𝑐 then

𝜋−1𝑔𝜋𝑖𝑑 = 𝜋−1𝑔𝑖𝑐 𝑓 = 𝜋−1𝑖𝑐 𝑓 = 𝜋−1𝜋𝑖𝑑 = 𝑖𝑑

so 𝜋−1𝑔𝜋 fixes 𝑖𝑑 . The choice of 𝜋 does not matter: for any other 𝜋 with 𝜋𝑖𝑑 = 𝑖𝑐 𝑓 , it holds that 𝜋
−1𝜋𝑖𝑑 = 𝜋−1𝑖𝑐 𝑓 = 𝑖𝑑 , so 𝜋

−1𝜋 ∈ Fix 𝑖𝑑 ,
so (Fix 𝑖𝑑 )𝜋−1 = (Fix 𝑖𝑑 )𝜋−1.
• This assignment is functorial. The identity 1𝑐 : 𝑐 → 𝑐 is sent to a coset (Fix 𝑖𝑐 )𝜋 for some 𝜋𝑖𝑐 = 𝑖𝑐1𝑐 . But this means 𝜋 fixes 𝑖𝑐 , so

(Fix 𝑖𝑐 )𝜋 = Fix 𝑖𝑐 . Given 𝑓 : 𝑒 → 𝑑 and 𝑔 : 𝑑 → 𝑐 , we have 𝐹 (𝑓 ) = (Fix 𝑖𝑒 )𝜋−1𝑓 and 𝐹 (𝑔) = (Fix 𝑖𝑑 )𝜋−1𝑔 and 𝐹 (𝑔𝑓 ) = (Fix 𝑖𝑒 )𝜋−1𝑓 𝑔 with

𝜋𝑓 , 𝜋𝑔 , and 𝜋𝑓 𝑔 fitting into the following commutative rectangles:

c∞ c∞ c∞

𝑒 𝑑 𝑐

𝜋𝑓 𝜋𝑔

𝑓

𝑖𝑒

𝑔

𝑖𝑑 𝑖𝑐

c∞ c∞

𝑒 𝑑 𝑐

𝜋𝑓 𝑔

𝑓

𝑖𝑐

𝑔

𝑖𝑒

We need 𝐹 (𝑔𝑓 ) = (Fix 𝑖𝑒 )𝜋−1𝑓 𝑔 = (Fix 𝑖𝑒 )𝜋−1𝑓 𝜋−1𝑔 = 𝐹 (𝑓 )𝐹 (𝑔). Since in general two cosets 𝑔𝐻,ℎ𝐻 are equal iff 𝑔ℎ−1 ∈ 𝐻 , this amounts

to showing (𝜋−1
𝑓
𝜋−1𝑔 ) (𝜋−1𝑓 𝑔 )

−1 ∈ Fix 𝑖𝑒 . The commutativity of the above rectangles implies

(𝜋−1
𝑓
𝜋−1𝑔 ) (𝜋−1𝑓 𝑔 )

−1𝑖𝑒 = 𝜋−1𝑓 𝜋−1𝑔 𝜋𝑓 𝑔𝑖𝑒 = 𝜋
−1
𝑓
𝜋−1𝑔 𝑖𝑐𝑔𝑓 = 𝜋−1

𝑓
𝜋−1𝑔 𝜋𝑔𝜋𝑓 𝑖𝑒 = 𝑖𝑒

so (𝜋−1
𝑓
𝜋−1𝑔 ) (𝜋−1𝑓 𝑔 )

−1
fixes 𝑖𝑒 as required.

• Full: let (Fix 𝑖𝑑 )𝜋−1 be a morphism Fix 𝑖𝑐 → Fix 𝑖𝑑 in Fix𝐶 , the goal being to find 𝑓 : 𝑑 → 𝑐 in 𝐶 such that the following square

commutes:

c∞ c∞

𝑑 𝑐

𝜋

𝑖𝑑

𝑓

𝑖𝑐

Such an 𝑓 exists iff the mono 𝜋𝑖𝑑 factors through 𝑖𝑐 . By Correspondence we just need to show Fix 𝑖𝑐 ⊆ Fix𝜋𝑖𝑑 . This follows from the

fact that (Fix 𝑖𝑑 )𝜋−1 is a morphism in Fix𝐶 : if 𝜎 fixes 𝑖𝑐 then 𝜋
−1𝜎𝜋 fixes 𝑖𝑑 , so 𝜋

−1𝜎𝜋𝑖𝑑 = 𝑖𝑑 , so 𝜎𝜋𝑖𝑑 = 𝜋𝑖𝑑 , so 𝜎 fixes 𝜋𝑖𝑑 . Since 𝜎

was arbitrary we have Fix 𝑖𝑐 ⊆ Fix (𝜋𝑖𝑑 ) as required.
• Faithful: suppose 𝑓 , 𝑔 : 𝑑 → 𝑐 and 𝐹 (𝑓 ) = 𝐹 (𝑔) : Fix 𝑖𝑐 → Fix 𝑖𝑑 . By definition 𝐹 (𝑓 ) = (Fix 𝑖𝑑 )𝜋−1𝑓 and 𝐹 (𝑔) = (Fix 𝑖𝑑 )𝜋−1𝑔 for some

𝜋𝑓 , 𝜋𝑔 fitting into the following commutative squares:

c∞ c∞

𝑑 𝑐

𝜋𝑓

𝑓

𝑖𝑑 𝑖𝑐

c∞ c∞

𝑑 𝑐

𝜋𝑔

𝑔

𝑖𝑑 𝑖𝑐

The assumption 𝐹 (𝑓 ) = 𝐹 (𝑔) implies 𝜋−1
𝑓
(𝜋−1𝑔 )−1 ∈ Fix 𝑖𝑑 , iff 𝜋

−1
𝑓
𝜋𝑔 ∈ Fix 𝑖𝑑 , iff 𝜋

−1
𝑓
𝜋𝑔𝑖𝑑 = 𝑖𝑑 , iff 𝜋𝑔𝑖𝑑 = 𝜋𝑓 𝑖𝑑 . Thus the bottom-

left-to-top-right routes of the two squares above are equal. Commutativity of these squares implies 𝑖𝑐 𝑓 = 𝑖𝑐𝑔, so 𝑓 = 𝑔 because 𝑖𝑐
mono.

• Surjective on objects: every object Fix 𝑖𝑐 of Fix𝐶 is equal to 𝐹 (𝑐), so in the image of 𝐹 .

□

Lemma C.32. Let (𝐶,𝐶∞, c∞, 𝑖•,𝐺) be a nominal situation. The set U := {Fix 𝑖𝑐 | 𝑐 ∈ Ob(𝐶)} is cofinal in the open subgroups of the

topological group 𝐺 , in the sense that any open subgroup 𝐻 of 𝐺 contains Fix 𝑖𝑐 for some 𝑐 .

Proof. Every open subgroup 𝐻 contains the identity 1c∞ , so contains an open neighborhood around 1c∞ of the form

⋂
𝑗 R 𝑓𝑗 for

(𝑓𝑗 : 𝑐 𝑗 → 𝑑 𝑗 ) 𝑗∈ 𝐽 a finite set of isos in 𝐶 . Unwinding the definition of R in 1c∞ ∈ R 𝑓𝑗 shows 𝑖𝑑 𝑗 𝑓𝑗 = 𝑖𝑐 𝑗 for all 𝑗 ∈ 𝐽 . Thus 𝜋 ∈ R 𝑓𝑗 iff
𝜋𝑖𝑐 𝑗 = 𝑖𝑑 𝑗 𝑓𝑗 = 𝑖𝑐 𝑗 iff 𝜋 ∈ Fix 𝑖𝑐 𝑗 for all 𝜋 ∈ Aut(c∞) and 𝑗 ∈ 𝐽 , so R 𝑓𝑗 = Fix 𝑖𝑐 𝑗 for all 𝑗 ∈ 𝐽 , and by Cofinality there exists 𝑐∗ with

𝐻 ⊇
⋂
𝑗

R 𝑓𝑗 =
⋂
𝑗

Fix 𝑖𝑐 𝑗 ⊇ Fix 𝑖𝑐∗ ∋ U

as needed. □
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Theorem C.33. For any nominal situation (𝐶,𝐶∞, c∞, 𝑖•,𝐺), there is an equivalence of categories

Shatomic (𝐶op) ≃ 𝐺 Set

where 𝐺 is given the refinement topology. Across this equivalence, an atomic sheaf 𝐹 on 𝐶op
corresponds to an 𝐺-set 𝐹 whose carrier is

colim𝑐∈𝑃op 𝐹𝑐 where 𝑃 is the preorder of subobjects of c∞ of the form 𝑖𝑐 for 𝑐 ∈ 𝐶 . Elements of 𝐹 are equivalence classes [𝑐, 𝑥 : 𝐹𝑐] where
[𝑐, 𝑥] = [𝑐′, 𝑥 ′] iff there exists 𝑐∗ with 𝑐 ⊑ 𝑐∗ ⊒ 𝑐′ where ⊑ is the preorder 𝑃 such that 𝑥 · 𝑗 = 𝑥 ′ · 𝑗 ′, where 𝑗 is the unique 𝐶-morphism

witnessing 𝑐 ⊑ 𝑐∗ via the equation 𝑖𝑐∗ 𝑗 = 𝑖𝑐 and 𝑗 ′ is the unique 𝐶-morphism witnessing 𝑐′ ⊑ 𝑐∗ via the equation 𝑖𝑐∗ 𝑗 ′ = 𝑖𝑐′ . The action of 𝐺

on these equivalence classes is given by [𝑐, 𝑥 : 𝐹𝑐] · 𝜋 = [𝑐′, 𝐹 (𝑓 ) (𝑥) : 𝐹𝑐′] where (𝑐′, 𝑓 : 𝑐 → 𝑐′) is an arbitrary iso 𝜋 refines, guaranteed to

exist by Closure.

Proof. Fix𝐶 ≃ 𝐶op
by Lemma C.31 and the subgroups Fix 𝑖𝑐 are cofinal in the open subgroups of 𝐺 (Lemma C.32), so MacLane and

Moerdijk [30, Theorem III.9.2] gives the desired equivalence. Rifling through the proof of MacLane and Moerdijk [30, Theorem III.9.2],

we find that it constructs for each 𝐹 ∈ Shatomic (Fix𝐶 ) the 𝐺-set with carrier colim
Fix 𝑖𝑐 ∈U 𝐹 (Fix 𝑖𝑐 ) where the colimit is overU ordered

by subgroup inclusion, and the diagram the colimit is taken over sends every such inclusion Fix 𝑖𝑐 ⊆ Fix 𝑖𝑑 to the Fix𝐶 -morphism

Fix 𝑖𝑐
(Fix 𝑖𝑑 )1c∞−−−−−−−−−→ Fix 𝑖𝑑 (MacLane and Moerdijk [30, p. 153]). By Correspondence every such morphism corresponds to the canonical

morphism 𝑖𝑑 → 𝑖𝑐 in 𝐶∞/c∞ witnessing the ordering relation 𝑑 ⊆ 𝑐 , so transporting colim
Fix 𝑖𝑐 ∈U 𝐹 (Fix 𝑖𝑐 ) across the equivalence

Fix𝐶 ≃ 𝐶op
gives the colimit in the statement. Further rifling through the proof of MacLane and Moerdijk [30, Theorem III.9.2] reveals

that the action of a c∞-auto 𝜋 sends an equivalence class [Fix 𝑖𝑐 , 𝑥 : 𝐹 (Fix 𝑖𝑐 )] to [𝜋−1 (Fix 𝑖𝑐 )𝜋, 𝐹 (𝜋) (𝑥) : 𝐹 (𝜋−1 (Fix 𝑖𝑐 )𝜋)] where 𝜋
is the Fix𝐶 -morphism 𝜋−1 (Fix 𝑖𝑐 )𝜋

(Fix 𝑖𝑐 )𝜋−−−−−−−→ Fix 𝑖𝑐 (MacLane and Moerdijk [30, p. 153]). Pick an arbitrary 𝑐′ and iso 𝑓 : 𝑐 → 𝑐′ that
𝜋−1 refines, guaranteed to exist by Closure. No matter the choice of 𝑐′, 𝑓 , we have 𝜋−1 (Fix 𝑖𝑐 )𝜋 = Fix 𝑖𝑐′ , since for all 𝜎 fixing 𝑖𝑐 it

holds that 𝜋−1𝜎𝜋𝑖𝑐′ = 𝜋−1𝜎𝑖𝑐 𝑓 −1 = 𝜋−1𝑖𝑐 𝑓 −1 = 𝑖𝑐′ 𝑓 𝑓
−1 = 𝑖𝑐′ so 𝜋

−1𝜎𝜋 fixes 𝑖𝑐′ , and conversely for all 𝜎 fixing 𝑖𝑐′ it holds that

𝜋𝜎𝜋−1𝑖𝑐 = 𝜋𝜎𝑖𝑐′ 𝑓 = 𝜋𝑖𝑐′ 𝑓 = 𝑖𝑐 𝑓
−1 𝑓 = 𝑖𝑐 so 𝜋𝜎𝜋

−1
fixes 𝑖𝑐 . Thus the Fix𝐶 -morphism 𝜋 has domain Fix 𝑖𝑐′ and codomain Fix 𝑖𝑐 , and the

action of a c∞-auto 𝜋 sends [Fix 𝑖𝑐 , 𝑥 : 𝐹 (Fix 𝑖𝑐 )] to [Fix 𝑖𝑐′ , 𝐹 (𝜋) (𝑥) : 𝐹 (Fix 𝑖𝑐′ )] for (𝑐′, 𝑓 : 𝑐′ → 𝑐) refining 𝜋−1. Transporting this across
the equivalence Fix𝐶 ≃ 𝐶op

gives the action in the statement: the subgroups Fix 𝑖𝑐 , Fix 𝑖𝑐′ correspond to the objects 𝑐, 𝑐′, and the morphism

𝜋 given by the coset (Fix 𝑖𝑐 )𝜋 is the image of 𝑓 under the functor 𝐶op → Fix𝐶 constructed in the proof of Lemma C.31. □

D ENHANCED MEASURABLE SHEAVES
D.1 Probabilistic concepts as sheaves
Definition D.1. An enhanced measurable sheaf is an object of the category Shatomic (EMS

std
).

Lemma D.2. If (𝑋, F ,N) is a standard enhanced measurable space and (𝑌,G) a measurable space arising from a Polish space and

𝑓 : (𝑋, F ) → (𝑌,G) a measurable map, then the setM := {𝐺 ∈ G | 𝑓 −1 (𝐺) ∈ N} makes (𝑌,G,M) a standard enhanced measurable space

and 𝑓 a morphism in EMS
std

.

Proof. The setM is a 𝜎-ideal in G because N is a 𝜎-ideal in F and taking preimages preserves all 𝜎-algebra operations, so (𝑌,G,M) is
an enhanced measurable space. The map 𝑓 preserves and reflects negligibles by construction, since𝑀 ∈ M iff 𝑓 −1 (𝑀) ∈ N . All that’s left is

to show (𝑌,G,M) is standard. This follows from 𝑌 Polish, by unforgetting a standard probability measure on (𝑋, F ,N) and pushing it

forward onto 𝑌 through 𝑓 [42, Section 2.7, p.24]. □

Lemma D.3. For any measurable space (𝐴,G) arising from a Polish space, the random variable presheaf

RV𝐴 (Ω, F ,N) = {measurable maps (Ω, F ) → (𝐴,G)}/=a.s. where 𝑋 =a.s. 𝑌 iff {𝜔 | 𝑋𝜔 ≠ 𝑌𝜔} ∈ N
RV𝐴 (𝑝 : Ω′ → Ω) ( [𝑋 ] : RV𝐴 (Ω)) : RV𝐴 (Ω′) = [𝑋 ◦ 𝑝]

is an atomic sheaf.

Proof. Given two random variables 𝑋,𝑌 let D𝑋,𝑌 := {𝜔 | 𝑋𝜔 ≠ 𝑌𝜔} be the event they disagree. The action of RV𝐴 on morphisms is

well-defined because 𝑝 negligible-reflecting: if D𝑋,𝑌 negligible in Ω then D𝑋◦𝑝,𝑌◦𝑝 = 𝑝−1 (D𝑋,𝑌 ) negligible in Ω′. Unwinding the definition

of RV𝐴 and making the quotienting of random variables up to almost-everywhere explicit, the presheaf RV𝐴 is an atomic sheaf if and only if

∀𝑝 [𝑋 ] . (∀𝑞 𝑟 . 𝑝 ◦ 𝑞 = 𝑝 ◦ 𝑟 =⇒ 𝑋 ◦ 𝑞 =a.s. 𝑋 ◦ 𝑟 )︸                                                   ︷︷                                                   ︸
𝑋 is 𝑝-invariant

=⇒ ∃![𝑋 ] . 𝑋𝑝 =a.s. 𝑋

The following diagram gives the types of all variables involved:

Ω′′ Ω′ Ω

𝐴

𝑟

𝑞 𝑝

𝑋
𝑋
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Suppose [𝑋 ] is 𝑝-invariant. By Lemma D.2, pushing the negligibles of Ω′ forward along 𝑋 makes 𝐴 into an standard enhanced measurable

space and 𝑋 a morphism of standard enhanced measurable spaces. By Lemma B.26, this gives a diagram

alg(Ω′) alg(Ω)

alg(𝐴)

𝑝−1

𝑋 −1

in MbleAlg
std

. There is an inclusion of standard measurable algebras im(𝑋 −1) ⊆ im(𝑝−1): otherwise, if there were some 𝐸 in im(𝑋 −1) not
in im(𝑝−1), then by Lemma B.54 and Lemma B.26 there would exist EMS

std
-maps 𝑞, 𝑟 : Ω′′ → Ω′ with 𝑝𝑞 = 𝑝𝑟 but 𝑞−1 (𝐸) ≠ 𝑟−1 (𝐸), so

𝑋 ◦ 𝑞 ̸=a.s. 𝑋 ◦ 𝑟 , contradicting the assumption that 𝑋 is 𝑝-invariant. The inclusion im(𝑋 −1) ⊆ im(𝑝−1) gives a corresponding (injective)
homomorphism alg(𝐴) ↩→ alg(Ω) making the above diagram of homomorphisms into a commutative triangle. By Lemma B.26 again, such a

homomorphism arises from a measurable map 𝑋 : Ω → 𝐴, and commutativity of the triangle implies 𝑋𝑝 =a.s. 𝑋 . Finally, for any 𝑌 : Ω → 𝐴

with 𝑌𝑝 =a.s. 𝑋 , the string of equations 𝑋𝑝 =a.s. 𝑋 =a.s. 𝑌𝑝 implies D
𝑋𝑝,𝑌𝑝

negligible in Ω′; since D
𝑋𝑝,𝑌𝑝

= 𝑝−1 (D
𝑋,𝑌
) and 𝑝 negligible

preserving, this implies D
𝑌,𝑋

negligible in Ω, which is to say 𝑌 =a.s. 𝑋 , establishing uniqueness of 𝑋 . □

Lemma D.4. Let𝑈 : 𝐶 → EMS
std

be a functor and 𝐺 a groupoid in 𝐶 . The presheafょ(𝑈𝐺), more explicitly given by

EMS
std
(Ω,𝑈𝐺) =

({maps Ω → 𝑈𝐴 for some 𝐴 ∈ 𝐺}/∼
where (𝑓 : Ω → 𝑈𝐴) ∼ (𝑔 : Ω → 𝑈𝐵) iff 𝑓 = 𝑈 (𝜋)𝑔 for some 𝜋 : 𝐵 → 𝐴 in 𝐺

)
[𝑓 ] · 𝑝 = [𝑓 𝑝]

is an atomic sheaf on EMS
std

.

Proof. The proof is analogous to the proof of Lemma D.3. Suppose 𝑝 : Ω′ → Ω and [𝑓 ] : EMS
std
(Ω′,𝑈𝐺) is 𝑝-invariant for some

𝐴 ∈ 𝐺 and 𝑓 : Ω′ → 𝑈𝐴. The goal is to find 𝑓 : EMS
std
(Ω′,𝑈𝐺) with 𝑓 𝑝 ∼ 𝑓 , which is to equivalent to finding 𝐴′ and 𝑓 : Ω′ → 𝑈𝐴′ and

𝜋 : 𝐴→ 𝐴′ in 𝐺 with 𝑓 𝑝 = 𝑈 (𝜋) 𝑓 , which is equivalent (by left-multiplying both sides by𝑈 (𝜋−1)) to finding 𝑓 : Ω′ → 𝑈𝐴 with 𝑓 𝑝 = 𝑓 . As

in the proof of Lemma D.3, such an 𝑓 exists if there is an inclusion of measurable algebras im(𝑓 −1) ⊆ im(𝑝−1), so it suffices to establish this

inclusion; uniqueness of 𝑓 then follows from 𝑝 epi. Rephrasing the assumption that 𝑓 is 𝑝-invariant in terms of measurable algebras, we have

∀𝑞 𝑟 . 𝑞𝑝−1 = 𝑟𝑝−1 =⇒ ∃𝜋 ∈ 𝐺. 𝑞𝑓 −1 = 𝑟 𝑓 −1𝑈 (𝜋)−1

with types of the variables involved depicted by the following diagram:

alg(Ω′′) alg(Ω′) alg(Ω)

alg(𝐴)

𝑞

𝑟 𝑝−1

𝑓 −1

Note that if 𝑞𝑓 −1 = 𝑟 𝑓 −1𝑈 (𝜋)−1 for some 𝜋 then 𝑞𝑓 −1 and 𝑟 𝑓 −1 have the same image in alg(Ω′′), so 𝑝-invariance of 𝑓 implies

∀𝑞 𝑟 . 𝑞𝑝−1 = 𝑟𝑝−1 =⇒ im(𝑞𝑓 −1) = im(𝑟 𝑓 −1). (3)

We are now ready to establish the inclusion im(𝑓 −1) ⊆ im(𝑝−1). Suppose for contradiction that there exists 𝐸 in alg(𝐴) with 𝑓 −1 (𝐸) not in
im(𝑝−1). By Lemma B.54, there exists a standard measurable algebra Ω′′ and homomorphisms 𝑞, 𝑟 as depicted above such that 𝑞𝑝−1 = 𝑟𝑝−1

but 𝑞𝑓 −1𝐸 ∉ im 𝑟 , contradicting (3). □

Lemma D.5. For any standard probability space Ω, the representable functor EMS
std
(−,Ω) is an atomic sheaf with minimal supports.

Proof. Sheafhood follows from Lemma D.4 by setting 𝑈 = 1 and 𝐺 to the trivial groupoid {1Ω}; the minimal support property follows

similarly from Lemma C.18. □

Definition D.6 (sheaf of probability spaces). The sheaf of probability spaces P isょ(U𝐺) with U the forgetful functor Prob
std
→ EMS

std
and

𝐺 the maximal subgroupoid of Prob
std

. Concretely, the action of P on objects is

P(Ω, F ,N) =
(
pairs ((𝐴,G, 𝜇), 𝑋 ) with (𝐴,G, 𝜇) ∈ Prob

std
and 𝑋 a EMS

std
-map (Ω, F ,N) → (𝐴,G, negligibles(𝜇))

mod ∼, where ((𝐴,G, 𝜇), 𝑋 ) ∼ ((𝐴′,G′, 𝜇′), 𝑋 ′) iff exists Prob
std

-iso 𝑖 : (𝐴,G, 𝜇) → (𝐴′,G′, 𝜇′) with 𝑋 ′ = 𝑈 (𝑖)𝑋

)
and the action on morphisms is by precomposition:

P(𝑓 : Ω′ → Ω) =
(

PΩ → PΩ′

[(𝐴,G, 𝜇), 𝑋 ] ↦→ [(𝐴,G, 𝜇), 𝑋 𝑓 ]

)
This presheaf is an atomic sheaf on EMS

std
by Lemma D.4, and has minimal supports by Lemma C.18.
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D.2 Separation as Day convolution
Lemma D.7. The category EMS

std
is a category of supports.

Proof. The category EMS
std

is symmetric semicartesian monoidal by Lemma B.35, contains only epis by Corollary B.27, and has the

atomic topology by Lemma B.31 and Fact C.3. Finally, setting𝑈 = 1EMS
std

in Lemma D.4 shows representables mod 𝐺 are atomic sheaves for

all groupoids 𝐺 . □

Lemma D.8. The tensor product of P with itself in sheaves can be computed as if in presheaves:

𝑖 (P ⊗ P) � 𝑖P ⊗ 𝑖P

Proof. EMS
std

is a category of supports (Lemma D.7) and P has minimal supports, so Lemma C.23 applies. □

Lemma D.9. The tensor product P ⊗ P is a sheaf of “independent probability spaces”, with action on objects

(P ⊗ P) (Ω) =
©«
pairs ( [𝐴,𝑋 ] : PΩ, [𝐵,𝑌 ] : PΩ) with 𝑋 : Ω → U𝐴 and 𝑌 : Ω → U𝐵

that factor through a tensor product; i.e., there exist Ω1,Ω2 and 𝑓 : Ω → Ω1 ⊗ Ω2 and 𝑋
′
: Ω1 → U𝐴 and 𝑌 ′ : Ω2 → U𝐵

with 𝑋 = 𝑋 ′ fst 𝑓 and 𝑌 = 𝑌 ′ snd 𝑓

ª®®¬
and action on morphisms

(P ⊗ P) (𝑓 : Ω′ → Ω) [(𝐴,𝑋 ), (𝐵,𝑌 )] = [(𝐴,𝑋 𝑓 ), (𝐵,𝑌 𝑓 )] .

Proof. The tensor product P ⊗ P is the image of the inclusion P ⊗ P ↩→ P × P defined by Lemma C.24. □

Definition D.10. There is a map join : P ⊗ P→ P defined by

joinΩ =

( PΩ ⊗ PΩ → PΩ

( [𝐴,𝑋 ], [𝐵,𝑌 ]) ↦→ [𝐴 ⊗ 𝐵, (𝑋,𝑌 )] where (𝑋,𝑌 ) (𝜔) = (𝑋𝜔,𝑌𝜔)

)
where we have used the representation calculated in Lemma D.9 to define join on pairs of independent probability spaces. The assumption

that [𝐴,𝑋 ] and [𝐵,𝑌 ] factor through some tensor product is needed in order for the map (𝑋,𝑌 ) to be well-formed: otherwise it may fail to

be negligible-reflecting as a map of enhanced measurable spaces Ω → U(𝐴 ⊗ 𝐵). (For example, if Ω = [0, 1] and 𝑋 = 𝑌 = 1[0,1] , the image of

the map (𝑋,𝑌 ) is the diagonal in the unit square, a negligible set with nonnegligible preimage.)

Note D.11. Another way to arrive at the map (𝑋,𝑌 ) in Definition D.10 is by unforgetting the tensor product that [𝐴,𝑋 ] and [𝐵,𝑌 ] factor
through, giving a commutative diagram

Ω

Ω𝐴 ⊗ Ω𝐵

Ω𝐴 Ω𝐵

U𝐴 U𝐵

𝑓

𝑋 𝑌

fst snd

𝑋 ′ 𝑌 ′

and then setting (𝑋,𝑌 ) to be the composite (𝑋 ′ ⊗ 𝑌 ′) 𝑓 . (Note U(𝐴 ⊗ 𝐵) = U𝐴 ⊗ U𝐵 by definition, so this typechecks.) Lemma C.24, used to

prove Lemma D.9, shows this construction does not depend on the choice of 𝑓 ,Ω𝐴,Ω𝐵, 𝑋
′, 𝑌 ′.

Definition D.12. There is a map emp : 1→ P defined by

empΩ =

(
1→ PΩ

_ ↦→ [1, ! : Ω → 1]

)
.

Lemma D.13. The tuple (P, join, emp) is a commutative monoid internal to the symmetric monoidal category (Shatomic (EMS
std
), ⊗, 1),

which is to say that the following equations hold in the internal linearly-typed language of this category:

• (Unit) 𝑝 :P ⊢ join(emp, 𝑝) = 𝑝 : P
• (Commutativity) 𝑝 :P, 𝑞 :P ⊢ join(𝑝, 𝑞) = join(𝑞, 𝑝) : P
• (Associativity) 𝑝 :P, 𝑞 :P, 𝑟 :P ⊢ join(𝑝, join(𝑞, 𝑟 )) = join(join(𝑝, 𝑞), 𝑟 ) : P

Proof. Each of the equations holds because the corresponding property holds of ⊗:
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• (Unit) The goal is to show

(
P
∼−→ 1 ⊗ P

emp⊗1
−−−−−−→ P ⊗ P

join

−−−→ P
)
= 1P. At stage Ω and given an element [𝐴,𝑋 ] : PΩ, the left side is

joinΩ ( [1, !Ω], [𝐴,𝑋 ]) = [1 ⊗ 𝐴, (!Ω, 𝑋 )] and the right side is [𝐴,𝑋 ]. These are the same equivalence classes via the isomorphism

1 ⊗ 𝐴 � 𝐴.
• (Commutativity) The goal is to show

(
P ⊗ P

join

−−−→ P
)
=

(
P ⊗ P 𝑠−→ P ⊗ P

join

−−−→ P
)
where 𝑠 witnesses symmetry of the monoidal product

⊗. At stage Ω and given an element of (P ⊗ P) (Ω), which by Lemma D.9 amounts to a pair of elements ( [𝐴,𝑋 ], [𝐵,𝑌 ]) : PΩ × PΩ that

factor through a tensor product, the left side is joinΩ ( [𝐴,𝑋 ], [𝐵,𝑌 ]) = [𝐴 ⊗ 𝐵, (𝑋,𝑌 )] and the right side is joinΩ ( [𝐵,𝑌 ], [𝐴,𝑋 ]) =
[𝐵 ⊗ 𝐴, (𝑌,𝑋 )]. These two equivalence classes are equal via the isomorphism 𝐴 ⊗ 𝐵 � 𝐵 ⊗ 𝐴.
• (Associativity) The goal is to show(

P ⊗(P ⊗ P)
1⊗join
−−−−−→ P ⊗ P

join

−−−→ P
)
=

(
P ⊗(P ⊗ P) ∼−→ (P ⊗ P) ⊗ P

join⊗1
−−−−−→ P ⊗ P

join

−−−→ P
)
.

At stage Ω and given an element of (P ⊗(P ⊗ P)) (Ω), which by two applications of Lemma C.24 amounts to a tuple of elements

( [𝐴,𝑋 ], ( [𝐵,𝑌 ], [𝐶,𝑍 ])) : PΩ × (PΩ × PΩ) that factor through tensor products in the proper way, the left side is

joinΩ ( [𝐴,𝑋 ], joinΩ ( [𝐵,𝑌 ], [𝐶,𝑍 ])) = [𝐴 ⊗ (𝐵 ⊗ 𝐶), (𝑋, (𝑌, 𝑍 ))],

and the right side is

joinΩ (joinΩ ( [𝐴,𝑋 ], [𝐵,𝑌 ]), [𝐶,𝑍 ]) = [(𝐴 ⊗ 𝐵) ⊗ 𝐶, ((𝑋,𝑌 ), 𝑍 )] .

These two equivalence classes are equal via the isomorphism 𝐴 ⊗ (𝐵 ⊗ 𝐶) � (𝐴 ⊗ 𝐵) ⊗ 𝐶 .
□

LemmaD.14. The tuple (P, join, emp) is a partial commutative monoid internal to the symmetric monoidal category (Shatomic (EMS
std
),×, 1),

in the sense that

• Unit: for all 𝑝 : 𝐹 → P the map (emp!, 𝑝) factors through 𝑖 and join(emp!, 𝑝) = 𝑝 .
• Commutativity: If a map (𝑝, 𝑞) : 𝐹 → P × P factors through the inclusion 𝑖 : P ⊗ P ↩→ P × P, there exists a unique map 𝑓 : 𝐹 → P ⊗ P
with 𝑖 𝑓 = (𝑝, 𝑞). Abusing notation and writing 𝑓 as (𝑝, 𝑞), relying on types to disambiguate, commutativity holds if whenever (𝑝, 𝑞)
factors through 𝑖 then so does (𝑞, 𝑝), and join(𝑝, 𝑞) = join(𝑞, 𝑝).
• Associativity: for all 𝑝, 𝑞, 𝑟 : 𝐹 → P such that (𝑝, 𝑞) factors through 𝑖 and (join(𝑝, 𝑞), 𝑟 ) factors through 𝑖 , it holds that (𝑞, 𝑟 ) factors
through 𝑖 and (𝑝, join(𝑞, 𝑟 )) factors through 𝑖 and join(join(𝑝, 𝑞), 𝑟 ) = join(𝑝, join(𝑞, 𝑟 )).

Proof. A map (𝑝, 𝑞) : 𝐹 → P × P factors through 𝑖 iff for any 𝑥 : 𝐹Ω the pair (𝑝 (𝑥), 𝑞(𝑥)) : PΩ × PΩ factors through a tensor product.

• (Unit) If 𝑝 (𝑥) = [𝐴,𝑋 ], the pair ( [1, !], [𝐴,𝑋 ]) always factors through the tensor product 1 ⊗ U𝐴, so (emp!, 𝑝) always factors through
𝑖 . That emp is a unit for join follows from Lemma D.13.

• (Commutativity) If (𝑝 (𝑥), 𝑞(𝑥)) factors through a tensor product Ω𝑝 ⊗ Ω𝑞 , then (𝑞(𝑥), 𝑝 (𝑥)) factors through the tensor product

Ω𝑞 ⊗ Ω𝑝 . Thus if (𝑝, 𝑞) factors through 𝑖 then so does (𝑞, 𝑝). Commutativity of join follows from Lemma D.13.

• (Associativity) Fix arbitrary 𝑥 and write 𝑝 (𝑥) = [𝐴,𝑋 ] and 𝑞(𝑥) = [𝐵,𝑌 ] and 𝑟 (𝑥) = [𝐶,𝑍 ]. Suppose ( [𝐴,𝑋 ], [𝐵,𝑌 ]) factors through
a tensor product Ω𝑝 ⊗ Ω𝑞 and (join( [𝐴,𝑋 ], [𝐵,𝑌 ]), [𝐶,𝑍 ]) = ( [𝐴 ⊗ 𝐵, (𝑋,𝑌 )], [𝐶,𝑍 ]) factors through a tensor product Ω𝑝𝑞 ⊗ Ω𝑟 .
The situation is illustrated by the following commutative diagram:

Ω

Ω𝑝 ⊗ Ω𝑞 Ω𝑝𝑞 ⊗ Ω𝑟

Ω𝑝 Ω𝑞 Ω𝑝𝑞 Ω𝑟

U𝐴 ⊗ U𝐵 U𝐶

U𝐴 U𝐵

𝑓𝑝,𝑞 𝑓𝑝𝑞,𝑟

fst snd

𝑋 ′⊗𝑌 ′

fst snd

𝑋 ′ 𝑌 ′
(𝑋,𝑌 ) ′ 𝑍 ′

fst snd

The root-to-leaf paths from Ω to U𝐴,U𝐵,U𝐶 are the random variables 𝑋,𝑌, 𝑍 respectively. The two paths Ω → U𝐴 ⊗ U𝐵 represent

the random variable (𝑋,𝑌 ): the path through Ω𝑝 ⊗ Ω𝑞 is the one constructed by join( [𝐴,𝑋 ], [𝐵,𝑌 ]), as described in Note D.11, and

the path through Ω𝑝𝑞 witnesses the fact that ( [𝐴 ⊗ 𝐵, (𝑋,𝑌 )], [𝐶,𝑍 ]) factors through the tensor product Ω𝑝𝑞 ⊗ Ω𝑟 .
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With this diagram, ( [𝐵,𝑌 ], [𝐶,𝑍 ]) visibly factors through Ω𝑝𝑞 ⊗ Ω𝑟 . The trickier case is to show ( [𝐴,𝑋 ], join( [𝐵,𝑌 ], [𝐶,𝑍 ])) factors
through a tensor product. Contract the pentagon in the middle of the above diagram and the root-to-leaf path from Ω to U𝐶 to get

Ω

(U𝐴 ⊗ U𝐵) ⊗ U𝐶

U𝐴 U𝐵 U𝐶

( (𝑋,𝑌 ) ′⊗𝑍 ′ ) 𝑓𝑝𝑞,𝑟

fst fst
snd fst

snd

Since all we have done is to contract and delete nodes in the previous diagram, the root-to-leaf paths still denote the random variables

𝑋,𝑌, 𝑍 . The expression join( [𝐵,𝑌 ], [𝐶,𝑍 ]) = [𝐵 ⊗ 𝐶, (𝑌, 𝑍 )] can be constructed following Note D.11, giving

Ω

(U𝐴 ⊗ U𝐵) ⊗ U𝐶

U𝐴 U𝐵 U𝐵 ⊗ U𝐶 U𝐶

( (𝑋,𝑌 ) ′⊗𝑍 ′ ) 𝑓𝑝𝑞,𝑟

fst fst

snd fst

snd

snd fst ⊗ snd

where the path Ω → U𝐵 ⊗ U𝐶 is (𝑌, 𝑍 ). Tidying and applying the isomorphism (U𝐴 ⊗ U𝐵) ⊗ U𝐶 � U𝐴 ⊗ (U𝐵 ⊗ U𝐶) gives

Ω

U𝐴 ⊗ (U𝐵 ⊗ U𝐶)

U𝐴 U𝐵 ⊗ U𝐶

𝑎 ( (𝑋,𝑌 ) ′⊗𝑍 ′ ) 𝑓𝑝𝑞,𝑟

fst snd

Since the path Ω → U𝐴 is 𝑋 and the path Ω → U𝐵 ⊗ U𝐶 is (𝑌, 𝑍 ), this diagram shows (𝑋, (𝑌, 𝑍 )) factors through a tensor product as

needed. Finally, the associativity equation follows from Lemma D.13.

□

Fact D.15. Let Prop denote the subobject classifier in Shatomic (EMS
std
), which is the constant sheaf Prop(Ω) = {⊤,⊥}.

Definition D.16 (ordering on probability spaces). Let (⊑) : P × P→ Prop be the map defined by

[𝐴,𝑋 ] ⊑Ω [𝐵,𝑌 ] ⇐⇒ there exists a morphism 𝑓 : 𝐵 → 𝐴 such that 𝑓 𝑌 = 𝑋 .

This respects the equivalence classes [𝐴,𝑋 ] and [𝐵,𝑌 ] because if 𝑓 𝑌 = 𝑋 and [𝐴,𝑋 ] = [𝐴,𝑋 ] and [𝐵,𝑌 ] = [𝐵,𝑌 ], so 𝑋 = 𝑖𝑋 and 𝑌 = 𝑗𝑌 for

isos 𝑖 : 𝐴→ 𝐴 and 𝑗 : 𝐵 → 𝐵, then setting 𝑓 to 𝑖 𝑓 𝑗−1 gives 𝑖 𝑓 𝑗−1𝑌 = 𝑖 𝑓 𝑗−1 𝑗𝑌 = 𝑖 𝑓 𝑌 = 𝑖𝑋 = 𝑋 . And it is natural in Ω because if 𝑝 : Ω′ → Ω
and 𝑓 𝑌 = 𝑋 witnesses [𝐴,𝑋 ] ⊑Ω [𝐵,𝑌 ] then 𝑓 𝑌𝑝 = 𝑋𝑝 witnesses [𝐴,𝑋𝑝] ⊑Ω′ [𝐵,𝑌𝑝] (in words, the ordering relation is invariant under

extensions of the sample space).

TheoremD.17. The tuple (P, join, emp, ⊑) is a partially defined monoid [21, §5.3] internal to Shatomic (EMS
std
); in other words, (P, join, emp)

forms an internal PCM and the following monotonicity condition holds: if 𝑝 ⊑Ω 𝑝′ and 𝑞 ⊑Ω 𝑞′ and (𝑝′, 𝑞′) factors through a tensor product,

then (𝑝, 𝑞) does too and joinΩ (𝑝, 𝑞) ⊑Ω joinΩ (𝑝′, 𝑞′).

Proof. The tuple (P, join, emp) is a PCM by Lemma D.14. For monotonicity, suppose [𝐴,𝑋 ] ⊑ [𝐴′, 𝑋 ′] and [𝐵,𝑌 ] ⊑ [𝐵′, 𝑌 ′] and (𝑋 ′, 𝑌 ′)
factor through a tensor product. Unwinding the definition of (⊑), there exist 𝑓 : 𝐴′ → 𝐴 and 𝑔 : 𝐵′ → 𝐵 with 𝑋 = 𝑓 𝑋 ′ and 𝑌 = 𝑔𝑌 ′. Now
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consider the following commutative diagram:

Ω

Ω𝐴′ ⊗ Ω𝐵′

Ω𝐴′ Ω𝐵′

U𝐴′ ⊗ U𝐵′

U𝐴′ U𝐵′

U𝐴 ⊗ U𝐵

U𝐴 U𝐵

𝑝

fst snd

𝑋 ′∗⊗𝑌 ′∗

𝑋 ′∗ 𝑌 ′∗

𝑓 ⊗𝑔

𝑓 𝑔

Since (𝑋 ′, 𝑌 ′) factors through a tensor product, there exist Ω𝐴′ ,Ω𝐵′ , 𝑝, 𝑋
′
∗, 𝑌
′
∗ with 𝑋

′ = 𝑋 ′∗ fst 𝑝 and 𝑌 ′ = 𝑌 ′∗ snd 𝑝 as shown. All paths

from Ω to U𝐴′ are equal to 𝑋 ′. Analogously, all paths from Ω to U𝐵′ are equal to 𝑌 ′. Since 𝑋 = 𝑓 𝑋 ′ and 𝑌 = 𝑔𝑌 ′, the root-to-leaf paths
from Ω to U𝐴 and Ω to U𝐵 are 𝑋 and 𝑌 respectively. The diagram shows 𝑋 and 𝑌 factor through Ω𝐴′ ⊗ Ω𝐵′ , so joinΩ ( [𝐴,𝑋 ], [𝐵,𝑌 ])
is defined. It only remains to show joinΩ ( [𝐴,𝑋 ], [𝐵,𝑌 ]) ⊑Ω joinΩ ( [𝐴′, 𝑋 ′], [𝐵′, 𝑌 ′]). Since joinΩ ( [𝐴,𝑋 ], [𝐵,𝑌 ]) = [𝐴 ⊗ 𝐵, (𝑋,𝑌 )] and
joinΩ ( [𝐴′, 𝑋 ′], [𝐵′, 𝑌 ′]) = [𝐴′ ⊗ 𝐵′, (𝑋 ′, 𝑌 ′)], it’s enough to show (𝑋,𝑌 ) factors through (𝑋 ′, 𝑌 ′). This is visible in the diagram: the

map (𝑋,𝑌 ) is the path from Ω to U𝐴 ⊗ U𝐵, the map (𝑋 ′, 𝑌 ′) is the path from Ω to U𝐴′ ⊗ U𝐵′, and the diagram shows the factorization

(𝑋,𝑌 ) = (𝑓 ⊗ 𝑔) (𝑋 ′, 𝑌 ′). □

E ABSOLUTELY CONTINUOUS SETS
E.1 A nominal situation for standard enhanced measurable spaces
Definition E.1. The Hilbert cube I𝜔 is the standard enhanced measurable space ( [0, 1]𝜔 , F ,N) of infinite sequences in the interval [0, 1].
The 𝜎-algebra F and negligibles N are those obtained in constructing the usual Lebesgue measure 𝜆 on I𝜔 , given by extending the function

𝜆( [𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛] × [0, 1]𝜔 ) = (𝑏1 − 𝑎1) × · · · × (𝑏𝑛 − 𝑎𝑛),
defined on finite-dimensional boxes in I𝜔 , to all Borel sets of I𝜔 and then taking the completion. As with the interval [0, 1], we will write I𝜔
for both the standard enhanced measurable space and its associated standard measurable algebra, relying on context to disambiguate.

Informally speaking, our equivalence result validates the idea that a Hilbert cube’s worth of randomness is enough so long as one embeds

every measurable space needed into I𝜔 in a way that leaves enough room for new randomness. To set up this result, we first introduce some

auxiliary categories to help track the particular way in which a standard enhanced measurable space can be embedded into I𝜔 ; these will be
helpful later, when it comes to finding simple descriptions of the absolutely continuous sets corresponding to the enhanced measurable

sheaves introduced in Appendix D.

Definition E.2. For 𝑛 ∈ N let proj
1..𝑛 be the projection I𝜔 → [0, 1]𝑛 defined by proj

1..𝑛 (𝑥1, . . . , 𝑥𝑛, . . . ) = (𝑥1, . . . , 𝑥𝑛).

Definition E.3. A EMS
std

-map 𝑓 : I𝜔 → 𝑌 has finite footprint if 𝑓 factors through proj
1..𝑛 for some 𝑛.

Definition E.4. Let I𝜔EMS
std

be the category whose objects are EMS
std

-maps I𝜔
𝑝
−→ 𝑋 for some standard enhanced measurable space 𝑋 ,

and whose morphisms from I𝜔
𝑝
−→ 𝑋 to I𝜔

𝑞
−→ 𝑌 are EMS

std
-maps 𝑓 : 𝑋 → 𝑌 .

Definition E.5. Let I𝜔EMSff
std

be the full subcategory of I𝜔EMS
std

spanned by objects I𝜔
𝑝
−→ 𝑋 with finite footprint.

Note no commutativity conditions are imposed on I𝜔EMS
std

-morphisms or I𝜔EMSff
std

-morphisms 𝑓 in relation to their domains 𝑝 and

codomains 𝑞. This may make 𝑝, 𝑞 seem superfluous — Lemma E.6 below establishes I𝜔EMS
std
≃ EMS

std
— but having them around allows

associating to each space 𝑋 a particular way in which it sits inside of I𝜔 ; this makes calculations easier later on.

Lemma E.6. There are equivalences EMS
std
≃ I𝜔EMS

std
≃ I𝜔EMSff

std
.

Proof. Fix an arbitrary standard enhanced measurable space 𝑋 . Since 𝑋 arises from a standard probability space, it is isomorphic to a

coproduct 𝑌 of countably many atoms and an interval [0, 𝑝]. For every such coproduct 𝑌 there is at least one map 𝑓 : [0, 1] → 𝑌 given by
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assigning a half-open subinterval to each atom and the remainder to [0, 𝑝], so the composite

(
I𝜔

proj
1..1−−−−−→ [0, 1]

𝑓
−→ 𝑌

∼−→ 𝑋

)
is a EMS

std
-map

I𝜔 → 𝑋 with finite footprint. Thus for every standard enhanced measurable space 𝑋 , there is at least one finite-footprint EMS
std

-map of the

form I𝜔 → 𝑋 . This establishes surjectivity-on-objects of the forgetful functor I𝜔EMSff
std
→ EMS

std
sending I𝜔

𝑝
−→ 𝑋 to 𝑋 ; it follows that

this functor witnesses EMS
std
≃ I𝜔EMSff

std
. The equivalence EMS

std
≃ I𝜔EMSff

std
holds similarly. □

Lemma E.7. For all 𝑛, there is an isomorphism of standard enhanced measurable spaces [0, 1]𝑛 � [0, 1], and hence also of their associated

standard measurable algebras.

Proof. Both [0, 1]𝑛 and [0, 1] arise from forgetting the measure on an atomless standard probability space. □

Lemma E.8. For all 𝑛 < 𝑚 it holds that [0, 1]𝑚 is relatively atomless over im(alg(𝑝)), where 𝑝 : [0, 1]𝑚 → [0, 1]𝑛 is the projection

𝑝 (𝑥1, . . . , 𝑥𝑛, . . . ) = (𝑥1, . . . , 𝑥𝑛).

Proof. Every subalgebra im(alg(𝑝)) has enough room: one can always allocate independent standard probability algebras in dimensions

𝑛 + 1 and above, so the claim follows from Theorem B.48. □

Definition E.9. For 𝑛 ∈ N and a EMS
std

-automorphism 𝜋 : [0, 1]𝑛 ∼−→ [0, 1]𝑛 , let 𝜋 ⊗ 1I𝜔 : I𝜔 → I𝜔 be the automorphism defined by

(𝜋 ⊗ 1I𝜔 ) (𝑥0, . . . , 𝑥𝑛−1, 𝑥𝑛, . . . ) = (𝑦0, . . . , 𝑦𝑛−1, 𝑥𝑛, . . . ) where 𝜋 (𝑥0, . . . , 𝑥𝑛−1) = (𝑦0, . . . , 𝑦𝑛−1).

Definition E.10. A EMS
std

-automorphism 𝜋 : I𝜔 → I𝜔 has width 𝑛 if 𝜋 = 𝜋 ′ ⊗ 1I𝜔 for some automorphism 𝜋 ′ : [0, 1]𝑛 → [0, 1]𝑛 .

Definition E.11. LetG≪ be the subgroup of AutEMS
std

I𝜔 consisting of the finite-width automorphisms of I𝜔 , topologized via the refinement

topology with respect to I𝜔EMSff
std

-isos: for all EMS
std

-maps I𝜔
𝑝
−→ 𝑋 and I𝜔

𝑞
−→ 𝑌 with finite footprint and EMS

std
-isos 𝑓 : 𝑝

∼→ 𝑞, the set

R 𝑓 := {𝜋 : G≪ | 𝑓 𝑝 = 𝑞𝜋} is a basic open.

Lemma E.12. Let inc be the I𝜔EMSff
std

-indexed family inc(I𝜔
𝑝
−→ 𝑋 ) := 𝑝 , sending each object I𝜔

𝑝
−→ 𝑋 of I𝜔EMSff

std
to the EMS

std
-map 𝑝 ,

now considered as a morphism 1I𝜔 → 𝑝 in I𝜔EMS
std

. The tuple (I𝜔EMSff
std

op

, I𝜔EMS
std

op, 1I𝜔 , inc,G≪) is a nominal situation.

Proof.

• (I𝜔EMSff
std

op

is a full subcategory of I𝜔EMS
std

op
) By Corollary B.27.

• (I𝜔EMSff
std

op

and I𝜔EMS
std

op
consist only of monic maps) Both I𝜔EMSff

std
and I𝜔EMS

std
contain only epis by transporting Corol-

lary B.27 across Lemma E.6.

• (The atomic topology exists for I𝜔EMSff
std

opop

) By Lemma B.31 and Lemma E.6.

• (Closure) Fix a map inc(I𝜔
𝑝
−→ 𝑋 ), which amounts to a finite-footprint map I𝜔

𝑝
−→ 𝑋 factoring through proj

1..𝑛 for some 𝑛, and an

auto 𝜋 in G≪ , which amounts to a EMS
std

-auto with width𝑚. Then 𝑝 also factors through proj
1..max(𝑚,𝑛) and 𝜋 also has width

max(𝑚,𝑛), so 𝑝 = 𝑝′proj
1..max(𝑚,𝑛) and 𝜋 = 𝜋 ′ ⊗ 1I𝜔 for some 𝑝′ : [0, 1]max(𝑚,𝑛) → 𝑋 and 𝜋 ′ : [0, 1]max(𝑚,𝑛) ∼−→ [0, 1]max(𝑚,𝑛)

.

Thus 𝑝𝜋 = 𝑝′proj
1..max(𝑚,𝑛) (𝜋 ′ ⊗ 1I𝜔 ) = 𝑝′𝜋 ′proj

1..max(𝑚,𝑛) showing I𝜔
𝑝𝜋
−−→ 𝑋 is an object of I𝜔EMSff

std
. The map 𝑋

1−→ 𝑋 is a

morphism 𝑝 → 𝑝𝜋 in I𝜔EMSff
std

, and the relevant square needed for Closure commutes in I𝜔EMS
std

: inc(𝑝)𝜋 = 𝑝𝜋 = 1𝑋 inc(𝑝𝜋).

• (Homogeneity) Since I𝜔EMSff
std

op Lemma E.6≃ EMSop
std

Lemma B.26≃ MbleAlg
std

, it suffices to show that for EMS
std

-maps I𝜔
𝑝
−→ 𝑋 and

I𝜔
𝑞
−→ 𝑌 with finite footprint andMbleAlg

std
-morphisms 𝑓 : alg(𝑋 ) → alg(𝑌 ), there exists a finite-width automorphism 𝜋 : I𝜔 → I𝜔

such that the following square commutes inMbleAlg
std

:

I𝜔 I𝜔

alg(𝑋 ) alg(𝑌 )

alg(𝜋 )

alg(𝑝 )

𝑓

alg(𝑞)

Suppose 𝑝 factors through proj
1..𝑛 and 𝑞 factors through proj

1..𝑚 . Then 𝑝 and 𝑞 also factor through proj
1..max(𝑚,𝑛)+1, so 𝑝 =

𝑝′proj
1..max(𝑚,𝑛)+1 and 𝑞 = 𝑞′proj

1..max(𝑚,𝑛)+1 for some 𝑝′ : [0, 1]max(𝑚,𝑛)+1 → 𝑋 and 𝑞′ : [0, 1]max(𝑚,𝑛)+1 → 𝑌 . It suffices to find

an automorphism 𝜋 ′ : [0, 1]max(𝑚,𝑛)+1 → [0, 1]max(𝑚,𝑛)+1
making the following square commute, as then 𝜋 ′ ⊗ 1I𝜔 : I𝜔 → I𝜔 will be

a finite-width automorphism of the form required:

[0, 1]max(𝑚,𝑛)+1 [0, 1]max(𝑚,𝑛)+1

alg(𝑋 ) alg(𝑌 )

alg(𝜋 ′ )

alg(𝑝′ )

𝑓

alg(𝑞′ )
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By Lemma E.7, there is an isomorphism 𝑖 : [0, 1]max(𝑚,𝑛)+1 � [0, 1], so it suffices to find an automorphism [0, 1] → [0, 1]. Since 𝑝 and

𝑞 factor through proj
1..𝑛 and proj

1..𝑚 , the maps 𝑝′ and 𝑞′ factor through the canonical projections

[0, 1]max(𝑚,𝑛)+1 → [0, 1]𝑛 and [0, 1]max(𝑚,𝑛)+1 → [0, 1]𝑚,

so [0, 1]max(𝑚,𝑛)+1
is relatively atomless over im(alg(𝑝′)) and im(alg(𝑞′)) by Lemma E.8. Hence [0, 1] is relatively atomless over

im(𝑖 alg(𝑝′)) and im(𝑖 alg(𝑞′)). Lemma B.52 then gives an automorphism of the form required.

• (Correspondence) Fix EMS
std

-maps I𝜔
𝑝
−→ 𝑋 and I𝜔

𝑞
−→ 𝑌 with finite footprint such that Fix𝑝 ⊆ Fix𝑞, so 𝑝𝜋 = 𝑝 implies 𝑞𝜋 = 𝑞 for all

finite-width automorphisms 𝜋 of I𝜔 . The goal is to show 𝑞 factors through 𝑝 . Since 𝑝 and 𝑞 have finite footprint, 𝑝 factors through

proj
1..𝑛 and 𝑞 through proj

1..𝑚 for some 𝑛,𝑚. Therefore, 𝑝 and 𝑞 also both factor through proj
1..max(𝑚,𝑛)+1, so 𝑝 = 𝑝′proj

1..max(𝑚,𝑛)+1
and 𝑞 = 𝑞′proj

1..max(𝑚,𝑛)+1 for some 𝑝′ : [0, 1]max(𝑚,𝑛)+1 → 𝑋 and 𝑞′ : [0, 1]max(𝑚,𝑛)+1 → 𝑌 . The inclusion Fix𝑝 ⊆ Fix𝑞 implies

every width-(max(𝑚,𝑛) + 1) auto fixing 𝑝 fixes 𝑞, so 𝑝 (𝜋 ⊗ 1I𝜔 ) = 𝑝 implies 𝑞(𝜋 ⊗ 1I𝜔 ) = 𝑞 for all autos 𝜋 of [0, 1]max(𝑚,𝑛)+1
.

Since 𝑝 (𝜋 ⊗ 1I𝜔 ) = 𝑝′proj1..max(𝑚,𝑛)+1 (𝜋 ⊗ 1I𝜔 ) = 𝑝′𝜋proj1..max(𝑚,𝑛)+1 and similarly 𝑞(𝜋 ⊗ 1I𝜔 ) = 𝑞′proj1..max(𝑚,𝑛)+1 (𝜋 ⊗ 1I𝜔 ) =
𝑞′𝜋proj

1..max(𝑚,𝑛)+1, this implies 𝑝′𝜋 = 𝑝′ and 𝑞′𝜋 = 𝑞′ for all automorphisms 𝜋 of [0, 1]max(𝑚,𝑛)+1
, or in other words that

Fix
Aut [0,1]max(𝑚,𝑛)+1 𝑝

′ ⊆ Fix
Aut [0,1]max(𝑚,𝑛)+1 𝑞

′
. The maps 𝑝′ and 𝑞′ induce corresponding subalgebras im(alg(𝑝′)) and im(alg(𝑞′))

of [0, 1]max(𝑚,𝑛)+1
, and [0, 1]max(𝑚,𝑛)+1

is relatively atomless over these subalgebras by Lemma E.8, so Lemma B.53 applies, giving

an inclusion of subalgebras im(alg(𝑞′)) ⊆ im(alg(𝑝′)). This in turn gives aMbleAlg
std

-morphism alg(𝑌 ) → alg(𝑋 ) factoring alg(𝑞′)
through alg(𝑝′) (since alg(𝑋 ) � im(alg(𝑝′)) and alg(𝑌 ) � im(alg(𝑞′))), which by Lemma B.26 gives a EMS

std
-map 𝑋 → 𝑌 factoring

𝑞′ through 𝑝′ and hence also 𝑞 through 𝑝 as required.

• (Cofinality) Given two objects I𝜔
𝑝
−→ 𝑋 and I𝜔

𝑞
−→ 𝑌 of I𝜔EMSff

std
with finite footprints witnessed by the factorizations 𝑝 = 𝑝′proj

1..𝑛

and 𝑞 = 𝑞′proj
1..𝑚 for some 𝑛,𝑚 ∈ N, the map proj

1..max(𝑚,𝑛) : I
𝜔 → [0, 1]max(𝑚,𝑛)

is relatively atomless by Lemma E.8 and there is

an inclusion of subgroups Fix proj
1..max(𝑚,𝑛) ⊆ Fix𝑝 ∩ Fix𝑞. This extends to finite families of objects by induction.

□

Theorem E.13. Shatomic (EMS
std
)
(1)
≃ Shatomic (I𝜔EMSff

std
)
(2)
≃

(
G≪

)
op Set

(3)
≃ G≪ Set.

Proof.

• (1): by Lemma E.6.

• (2): by Theorem C.33 and Lemma E.12, and AutI𝜔EMS
std

op I𝜔 = AutEMSop
std

I𝜔 = (AutEMS
std

I𝜔 )op.
• (3): by Lemma C.6.

□

Definition E.14. An absolutely continuous set is an object of the category G≪ Set of continuous G≪-sets.

E.2 Probabilistic concepts as absolutely continuous sets
We now use the equivalence established in Theorem E.13 to calculate the G≪-set counterparts to the sheaves defined in Appendix D.

E.2.1 Random variables.

Definition E.15. For 𝐴 a Polish space, a random variable 𝑋 : I𝜔 → 𝐴 (equivalently, an element of RV𝐴I𝜔 where RV𝐴 is the sheaf of

random variables) has finite footprint if it factors through proj
1..𝑛 for some 𝑛. Write I𝜔

ff−→ 𝐴 for the collection of random variables with

finite footprint.

Definition E.16. For 𝐴 a Polish space, the absolutely continuous set of 𝐴-valued random variables is the set RV𝐴 := (I𝜔 ff−→𝐴) of 𝐴-valued
random variables with finite footprint, with action 𝑋 · 𝜋 = 𝑋𝜋 .

We now show RV𝐴 indeed defines an absolutely continuous set, and moreover corresponds to the enhanced measurable sheaf RV𝐴 .

Lemma E.17. Across the equivalence Shatomic (EMS
std
) ≃ Shatomic (I𝜔EMSff

std
) given by Theorem E.13, the sheaf RV𝐴 ∈ Shatomic (EMS

std
)

of random variables corresponds to a sheaf R̂V𝐴 ∈ Shatomic (I𝜔EMSff
std
) of random variables that factor through maps with finite footprint:

R̂V𝐴 (𝑝 : I𝜔 → Ω) = {𝑋 ∈ RV𝐴I𝜔 | there exists a unique 𝑋 ′ : RV𝐴 (Ω) with 𝑋 =a.s. 𝑋
′𝑝}

R̂V𝐴 (𝑞 : 𝑝′ → 𝑝) (𝑋 ) = 𝑋 ′𝑞𝑝′ where 𝑋 ′ is the unique such that 𝑋 =a.s. 𝑋
′𝑝

Proof. Let ·̃ be the equivalence Shatomic (EMS
std
) → Shatomic (I𝜔EMSff

std
); inspecting the proof of Lemma E.6 shows that if 𝐹 is a sheaf

on EMS
std

then 𝐹 is a sheaf on I𝜔EMSff
std

defined by 𝐹 (𝑝 : I𝜔 → Ω) = 𝐹 (Ω) on objects and 𝐹 (𝑞 : 𝑝 → 𝑝′) = 𝐹 (𝑞) on morphisms. In the case
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of RV𝐴 , this gives the following:

R̃V𝐴 (𝑝 : I𝜔 → Ω) = RV𝐴 (Ω)

R̃V𝐴 (𝑞 : 𝑝′ → 𝑝) (𝑋 ) = 𝑋𝑞

We now show R̃V𝐴 � R̂V𝐴 . For 𝑝 : I𝜔 → Ω an object of I𝜔EMSff
std

, let 𝛼𝑝 be the map R̃V𝐴 (𝑝) → R̂V𝐴 (𝑝) that sends 𝑋 ∈ R̃V𝐴 (Ω) to
𝑋𝑝 ∈ R̂V𝐴 (Ω). This is well-defined: it produces elements of type R̂V𝐴 (𝑝) because 𝑋 is unique, for if there were some other 𝑋 ′ ∈ RV𝐴 (Ω)
with 𝑋𝑝 =a.s. 𝑋

′𝑝 , then 𝑝−1 ({𝜔 | 𝑋𝜔 ≠ 𝑋 ′𝜔}) negligible, so {𝜔 | 𝑋𝜔 ≠ 𝑋 ′𝜔} negligible because 𝑝 negligible-preserving, so 𝑋 =a.s. 𝑋
′
. This

automatically makes 𝛼𝑝 bijective, since its inverse is the map that sends𝑋 ∈ R̂V𝐴 (𝑝) to the unique𝑋 ′ with𝑋 =a.s. 𝑋
′𝑝 . Finally, 𝛼 is natural in

𝑝: if 𝑋 : Ω → 𝐴 and 𝑞 : 𝑝′ → 𝑝 a morphism in I𝜔EMSff
std

, then 𝛼𝑝′ (R̃V𝐴 (𝑞) (𝑋 )) = 𝛼𝑝′ (𝑋𝑞) = 𝑋𝑞𝑝′ = R̂V𝐴 (𝑞) (𝑋𝑝) = R̂V𝐴 (𝑞) (𝛼𝑝 (𝑋 )). □

Lemma E.18. Across the equivalence Shatomic (I𝜔EMSff
std
) ≃ G≪ Set given by Theorem E.13, the sheaf R̂V𝐴 ∈ Shatomic (I𝜔EMSff

std
) defined

in Lemma E.17 corresponds to the AutEMS
std

I𝜔 -set
(
I𝜔

ff−→𝐴
)
of 𝐴-valued random variables with finite footprint, with action 𝑋 · 𝜋 = 𝑋𝜋 .

Proof. Let ·̃ be the equivalence Shatomic (I𝜔EMSff
std
) → AutEMS

std
I𝜔 Set. The proofs involved in its construction are: Theorem C.33 to

pass from sheaves to

(
G≪

)
op

-sets, and then Lemma C.6 to pass from left to right actions. Inspecting these reveals that if 𝐹 is a sheaf on

I𝜔EMSff
std

then 𝐹 is an AutEMS
std

I𝜔 -set with carrier colim

(1I𝜔
𝑝−→𝑝 ) ∈𝑃op

𝐹 (𝑝) where 𝑃op is the set of I𝜔EMS
std

-morphisms out of 1I𝜔 of the

form inc(I𝜔
𝑝
−→ 𝑋 ), preordered by (1I𝜔

𝑝
−→ 𝑝) ⪯ (1I𝜔

𝑞
−→ 𝑞) if there exists a morphism 𝑟 with 𝑟𝑝 = 𝑞 (with 𝑟 necessarily unique because

every EMS
std

-map is epi). The following diagram illustrates:

I𝜔

I𝜔 I𝜔 I𝜔

𝑋 𝑌

1I𝜔

𝑝
𝑝 𝑞

𝑞

𝑟

The vertical arrows depict the objects 1I𝜔 , 𝑝, 𝑞 of I𝜔EMS
std

. The diagonal arrows are two objects of the preorder 𝑃op: I𝜔EMS
std

-morphisms

1I𝜔
𝑝
−→ 𝑝 and 1I𝜔

𝑞
−→ 𝑞, equal to inc(𝑝) and inc(𝑞) by definition. The dashed arrow witnesses the inequality 𝑝 ⪯ 𝑞 in 𝑃op: it is a I𝜔EMS

std
-

morphism 𝑝
𝑟−→ 𝑞 such that

(
1I𝜔

𝑝
−→ 𝑝

𝑟−→ 𝑞
)
=

(
1I𝜔

𝑞
−→ 𝑞

)
, or equivalently a EMS

std
-morphism 𝑟 with 𝑟𝑝 = 𝑞.

Specializing to our case 𝐹 = R̂V𝐴 where R̂V𝐴 is the sheaf defined in Lemma E.17, the carrier of 𝐹 =
˜̂
RV𝐴 is the colimit over a diagram

whose inc(𝑝)th component (for some 𝑝 : I𝜔 → Ω) is

R̂V𝐴 (I𝜔
𝑝
−→ Ω) = {𝑋 ∈ RV𝐴I𝜔 | 𝑋 factors (uniquely) through 𝑝}.

Thus each component of the colimiting diagram is a subset of RV𝐴I𝜔 . Since R̂V𝐴 is an atomic sheaf, every morphism in the colimiting

diagram is an injective Set-function (Definition C.4); unwinding definitions reveals that inequalities (I𝜔
𝑝
−→ Ω′) ⪯ (I𝜔

𝑞
−→ Ω) in 𝑃op, which

is to say maps 𝑟 : Ω′ → Ω with 𝑟𝑝 = 𝑞, are sent by R̂V𝐴 to inclusions

{𝑋 ∈ RV𝐴I𝜔 | 𝑋 factors through 𝑞} ↩→ {𝑋 ∈ RV𝐴I𝜔 | 𝑋 factors through 𝑝}
(𝑋 ′𝑞 for some 𝑋 ′ ∈ RV𝐴Ω) ↦→ 𝑋 ′𝑟𝑝

Since 𝑟𝑝 = 𝑞 by assumption, these inclusion maps are the canonical ones among subsets of RV𝐴I𝜔 . Thus the colimiting diagram defining the

carrier of
˜̂
RV𝐴 is a diagram of canonical inclusions of subsets of RV𝐴I𝜔 , and its colimit is the union of all such subsets:˜̂

RV𝐴 =
⋃(

I𝜔
𝑝−→Ω

)
∈I𝜔EMSff

std

{𝑋 ∈ RV𝐴I𝜔 | 𝑋 factors through 𝑝}

= {𝑋 ∈ RV𝐴I𝜔 | 𝑋 factors through 𝑝 for some

(
I𝜔

𝑝
−→ Ω

)
∈ I𝜔EMSff

std
}

(∗)
= {𝑋 ∈ RV𝐴I𝜔 | 𝑋 has finite footprint}

= I𝜔
ff−→𝐴

The equation (∗) holds: if 𝑋 factors through a map 𝑝 with finite footprint then 𝑋 has finite footprint, and conversely if 𝑋 has finite footprint

then it factors through proj
1..𝑛 for some 𝑛. This shows the G≪-set corresponding to R̂V𝐴 has carrier I𝜔

ff−→𝐴 as claimed.



A Nominal Approach to Probabilistic Separation Logic LICS ’24, July 8–11, 2024, Tallinn, Estonia

Further inspecting Theorem E.13, which transports sheaves on I𝜔EMSff
std

to left G≪-sets as described in Theorem C.33, shows R̂V𝐴

corresponds to the left G≪-action on equivalence classes [𝑝 ∈ I𝜔EMSff
std
, 𝑋 : R̂V𝐴 (𝑝)] defined by

𝜋 ·
[
(I𝜔

𝑝
−→ Ω), 𝑋 : R̂V𝐴 (𝑝)

]
=

[
(I𝜔

𝑞
−→ Ω′), R̂V𝐴 (𝑟 ) (𝑋 )

]
where (𝑞, 𝑟 : 𝑝 → 𝑞) is an arbitrary I𝜔EMSff

std

op

-iso 𝜋 refines.

The following diagram illustrates:

I𝜔 I𝜔

Ω Ω′

𝐴

𝜋

𝑝

𝑋

𝑞

R̂V𝐴 (𝑟 ) (𝑋 )

𝑋 ′

𝑟

The triangle on the left depicts the equivalence class [𝑝,𝑋 ]: by the calculation of the carrier of
˜̂
RV𝐴 above, this equivalence class corresponds

to a random variable 𝑋 that factors through 𝑝 via 𝑋 ′ as shown. The dashed arrows depict the action of the automorphism 𝜋 on 𝑋 . There

exists by Closure arbitrary Ω′, 𝑞, 𝑟 with 𝑟 a I𝜔EMSff
std

op

-iso from 𝑝 to 𝑞 that 𝜋 refines; this amounts to Ω′, 𝑞, 𝑟 with 𝑟 : I𝜔EMSff
std
(𝑞, 𝑝) iso

making the square commute as shown. The result of the action is the composite R̂V𝐴 (𝑟 ) (𝑋 ) = 𝑋 ′𝑟𝑞, illustrated by the dashed arrow I𝜔 → 𝐴.

Commutativity of the diagram and 𝜋, 𝑟 iso implies R̂V𝐴 (𝑟 ) (𝑋 ) = 𝑋 ′𝑟𝑞 = 𝑋 ′𝑝𝜋−1 = 𝑋𝜋−1. Thus the left G≪-set corresponding to the sheaf

R̂V𝐴 across equivalence (2) of Theorem E.13 has action (𝜋,𝑋 ) ↦→ 𝑋𝜋−1. This corresponds under equivalence (3) of Theorem E.13 to the

right-G≪-action (𝑋, 𝜋) ↦→ 𝑋𝜋 , as claimed. □

Theorem E.19. The enhanced measurable sheaf RV𝐴 corresponds to the absolutely continuous set RV𝐴 across the equivalence in

Theorem E.13.

Proof. Combine Lemma E.17 and Lemma E.18. □

E.2.2 Probability spaces.

Definition E.20. Let (𝑋, F ,N) be an standard enhanced measurable space, (𝑌,G, 𝜇) a standard probability space, and 𝑓 : (𝑋, F ,N) →
U(𝑌,G, 𝜇) a EMS

std
-map. The pullback of (𝑌,G, 𝜇) along 𝑓 , written 𝑓 ∗ (G, 𝜇), is the pair (𝑓 ∗G, 𝑓 ∗𝜇) defined by

𝑓 ∗G = {𝑓 −1 (𝐺)△𝑁 | 𝐺 ∈ G, 𝑁 ′ ∈ N}
𝑓 ∗𝜇 (𝑓 −1 (𝐺)△𝑁 ) = 𝜇 (𝐺) for all 𝐺 ∈ G, 𝑁 ∈ N

This operation makes (𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) a probability space with negligibles N and 𝑓 a measure-preserving map (𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) → (𝑌,G, 𝜇).

Proof. The set 𝑓 ∗G is a 𝜎-algebra: it contains the empty set because ∅ = 𝑓 −1 (∅)△∅ ∈ 𝑓 ∗G, it’s closed under complements be-

cause (𝑓 −1 (𝐺)△𝑁 )c = 𝑓 −1 (𝐺)c△𝑁 = 𝑓 −1 (𝐺c)△𝑁 ∈ 𝑓 ∗G for all 𝐺 ∈ G. For closure under countable unions, fix a countable family

(𝑓 −1 (𝐺𝑖 )△𝑁𝑖 )𝑖∈N. First

𝑥 ∈
⋃
𝑖

(𝑓 −1 (𝐺𝑖 )△𝑁𝑖 ) \
⋃
𝑖

𝑓 −1 (𝐺𝑖 )

iff (∃𝑖 .𝑓 (𝑥) ∈ 𝐺𝑖 ⇔ 𝑥 ∉ 𝑁𝑖 ) ∧ ∀𝑖 .𝑓 (𝑥) ∉ 𝐺𝑖
iff (∃𝑖 .𝑥 ∈ 𝑁𝑖 ) ∧ ∀𝑖 .𝑓 (𝑥) ∉ 𝐺𝑖
iff 𝑥 ∈

⋃
𝑖

𝑁𝑖 ∩
⋂
𝑖

𝑓 −1 (𝐺c

𝑖 )
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and

⋃
𝑖 𝑁𝑖 ∩

⋂
𝑖 𝑓
−1 (𝐺c

𝑖
) is in N because

⋃
𝑖 𝑁𝑖 is in N and (𝑋, F ,N) arises from a complete probability space. Second

𝑥 ∈
⋃
𝑖

𝑓 −1 (𝐺𝑖 ) \
⋃
𝑖

(𝑓 −1 (𝐺𝑖 )△𝑁𝑖 )

iff (∃𝑖 .𝑓 (𝑥) ∈ 𝐺𝑖 ) ∧ ∀𝑖 .𝑓 (𝑥) ∈ 𝐺𝑖 ⇔ 𝑥 ∈ 𝑁𝑖
iff (∃𝑖 .𝑥 ∈ 𝑁𝑖 ) ∧ ∀𝑖 .𝑓 (𝑥) ∈ 𝐺𝑖 ⇔ 𝑥 ∈ 𝑁𝑖
iff 𝑥 ∈

⋃
𝑖

𝑁𝑖 ∩
⋂
𝑖

𝑓 −1 (𝐺c

𝑖 )△𝑁𝑖

and

⋃
𝑖 𝑁𝑖 ∩

⋂
𝑖 𝑓
−1 (𝐺c

𝑖
)△𝑁𝑖 ) negligible similarly. Thus

(⋃
𝑖

(𝑓 −1 (𝐺𝑖 )△𝑁𝑖 )
)

︸                    ︷︷                    ︸
𝐴

△
(⋃
𝑖

𝑓 −1 (𝐺𝑖 )
)

︸            ︷︷            ︸
𝐵

= (𝐴 \ 𝐵︸︷︷︸
∈N

) ⊎ (𝐵 \𝐴︸︷︷︸
∈N

) ∈ N as required.

The measure 𝜇′ is well-defined: if 𝑓 −1 (𝐺)△𝑁 ′ = 𝑓 −1 (𝐺)△𝑁 ′ for 𝐺,𝐺 ∈ G and 𝑁 ′, 𝑁
′ ∈ N ′ then rearranging using the algebraic

properties of △ gives 𝑓 −1 (𝐺△𝐺) = 𝑁 ′△𝑁 ′ ∈ N ′, so𝐺△𝐺 ∈ N because 𝑓 negligible-preserving, so 𝜇 (𝐺△𝐺) = 0 because 𝜇 has negligiblesN ,

so 𝜇 (𝐺) = 𝜇 (𝐺).
The equation defining 𝑓 ∗𝜇 makes 𝑓 measure-preserving, and 𝑓 ∗𝜇 has negligiblesN because if𝐺 ∈ G and𝑁 ∈ N then 𝑓 ∗𝜇 (𝑓 −1 (𝐺)△𝑁 ) = 0

iff 𝜇 (𝐺) = 0, iff 𝐺 ∈ negligibles(𝜇), iff 𝑓 −1 (𝐺) ∈ N (by 𝑓 negligible-reflecting), iff 𝑓 −1 (𝐺)△𝑁 ∈ N . □

Note E.21. Informally, what this operation is doing is completing the usual pullback measure on 𝑓 −1 (G) with respect to the the negligibles

N . For example: if 𝑓 is the map [0, 1] → {⊤,⊥} given by the indicator function 𝜆𝑥 .[𝑥 < 1/2] where [0, 1] is given Lebesgue-negligibles and

{⊤,⊥} is given the uniform probability measure, then the usual pullback 𝜎-algebra is the 4-element 𝜎-algebra F generated by the atoms

{[0, 1/2), [1/2, 1]}, with each atom getting probability 1/2. But the operation described in Definition E.20 produces not the 𝜎-algebra F but

rather F plus all Lebesgue-negligible subsets of [0, 1], so that it includes not just [0, 1/2) but also the closed interval [0, 1/2], sets of the
form [0, 1/2) \ {𝑥} for all 𝑥 ∈ [0, 1], the set [0, 1/2] \ Q, and so on.

Definition E.22 (probability space on an enhanced measurable space). Let (Ω, F ,N) be an enhanced measurable space. A probability space
on (Ω, F ,N) is a pair (G, 𝜇) such that N ⊆ G ⊆ F and 𝜇 is a probability measure with negligibles N . Call such a pair standardizable if
(Ω,G, 𝜇) arises via pullback along a map 𝑋 : (Ω, F ,N) → U(𝑌,G, 𝜇) with (𝑌,G, 𝜇) a standard probability space. In case (Ω, F ,N) = I𝜔 , a
standardizable probability space (G, 𝜇) has finite footprint if it arises by pullback along a map with finite footprint.

Definition E.23. The absolutely continuous set of probability spaces is the set P of standardizable probability spaces on I𝜔 with finite

footprint, and action (F , 𝜇) · 𝜋 = 𝜋∗ (F , 𝜇).

We now show P indeed defines an absolutely continuous set, and moreover corresponds to the enhanced measurable sheaf P.

Lemma E.24. Let (Ω, F ,N) be an enhanced measurable space, 𝑋 : (Ω, F ,N) → U(𝐴,G, 𝜇) a EMS
std

-map, and 𝜋 : (𝐴,G, 𝜇) → (𝐴′,G′, 𝜇′)
a Prob

std
-iso. Then 𝑋 ∗ (G, 𝜇) = (𝜋𝑋 )∗ (G′, 𝜇′).

Proof. Let 𝜏 : (𝐴′,G′, 𝜇′) → (𝐴,G, 𝜇) be the inverse of 𝜋 (to avoid confusion with the operation 𝜋−1 of taking 𝜋-preimages). First, the

𝜎-algebras 𝑋 ∗G and (𝜋𝑋 )∗G′ are equal. For any event 𝑋 −1 (𝐺)△𝑁 ∈ 𝑋 ∗G with 𝐺 ∈ G, 𝑁 ∈ N ,

𝑋 −1 (𝐺)△(𝜋𝑋 )−1 (𝜏−1𝐺) = 𝑋 −1 (𝐺)△𝑋 −1 (𝜋−1 (𝜏−1𝐺)) = 𝑋 −1 (𝐺)△𝑋 −1 (𝑀)

for some 𝑀 ∈ negligibles(𝜇), so 𝑋 −1 (𝐺)△𝑁 = (𝜋𝑋 )−1 (𝜏−1𝐺)︸  ︷︷  ︸
∈G′

△ (𝑁△𝑋 −1 (𝑀))︸           ︷︷           ︸
∈N

∈ 𝑋 ∗G′. This shows 𝑋 ∗G ⊆ (𝜋𝑋 )∗G′. Running the same

argument with the roles of 𝜋 and 𝜏 swapped shows the converse inclusion. Next, the measures are equal: for 𝑋 −1 (𝐺)△𝑁 ∈ 𝑋 ∗G with

𝐺 ∈ G, 𝑁 ∈ N ,

(𝜋𝑋 )∗𝜇′ (𝑋 −1 (𝐺)△𝑁 ) = (𝜋𝑋 )∗𝜇′ ((𝜋𝑋 )−1 (𝜏−1𝐺)︸  ︷︷  ︸
∈G′

△𝑋 −1 (𝑀)︸   ︷︷   ︸
∈N

) for some𝑀 ∈ negligibles(𝜇), as in the argument above

= 𝜇′ (𝜏−1 (𝐺)) by definition of (𝜋𝑋 )∗𝜇′

= 𝜇 (𝐺) because 𝜏 measure-preserving

= 𝑋 ∗𝜇 (𝑋 −1 (𝐺)△𝑁 ) .

□

Lemma E.25. Pullback of probability spaces respects respects composition of EMS
std

-maps: for all EMS
std

-maps 𝑓 : (𝑋, F ,N) → (𝑌,G,M)
and 𝑔 : (𝑌,G,M) → U(𝑍,H , 𝜇) it holds that (𝑔𝑓 )∗ (H , 𝜇) = 𝑓 ∗𝑔∗ (H , 𝜇).
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Proof. First, the 𝜎-algebras are equal. Every (𝑔𝑓 )−1 (𝐻 )△𝑁 ∈ (𝑔𝑓 )∗H is equal to 𝑓 −1 (𝑔−1 (𝐻 )△∅)△𝑁 ∈ 𝑓 ∗𝑔∗H and conversely every

𝑓 −1 (𝑔−1 (𝐻 )△𝑀)△𝑁 ∈ 𝑓 ∗𝑔∗H is equal to (𝑔𝑓 )−1 (𝐻 )△ 𝑓 −1 (𝑀)△𝑁︸        ︷︷        ︸
∈N

∈ (𝑔𝑓 )∗H . Second, the measures are equal:

𝑓 ∗𝑔∗𝜇 (𝑓 −1 (𝑔−1 (𝐻 )△𝑀)△𝑁 ) = 𝑔∗𝜇 (𝑔−1 (𝐻 )△𝑀) = 𝜇 (𝐻 ) = (𝑔𝑓 )∗𝜇 ((𝑔𝑓 )−1 (𝐻 )△(𝑓 −1 (𝑀)△𝑁 )) = (𝑔𝑓 )∗𝜇 (𝑓 −1 (𝑔−1 (𝐻 )△𝑀)△𝑁 )

for all (𝑓 −1 (𝑔−1 (𝐻 )△𝑀)△𝑁 ) ∈ 𝑓 ∗𝑔∗H . □

Lemma E.26. For 𝑓 : (𝑋, F ,N) → U(𝑌,G, 𝜇) a EMS
std

-map, the measure algebra homomorphism alg(𝑋, 𝑓 ∗G, 𝑓 ∗𝜇)
alg(𝑓 )
←−−−−− alg(𝑌,G, 𝜇) is

bijective.

Proof. The homomorphism alg(𝑓 ) is automatically injective because 𝑓 measure-preserving as a map (𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) → (𝑌,G, 𝜇) and
measure-preserving homomorphisms are injective [19, 324K(a)]. It’s surjective because every element of alg(𝑋, 𝑓 ∗G, 𝑓 ∗𝜇) is an equivalence

class of the form [𝑓 −1 (𝐺)△𝑁 ] in the quotient boolean algebra 𝑓 ∗G/negligibles(𝑓 ∗𝜇) for some 𝐺 ∈ G, 𝑁 ∈ N , and

[𝑓 −1 (𝐺)△𝑁 ] (∗)= [𝑓 −1 (𝐺)] = alg(𝑓 ) [𝐺]
where (∗) holds because 𝑓 ∗𝜇 has negligibles N . □

Lemma E.27. The sheaf P is equivalently a sheaf of standardizable probability spaces, whose action on objects is

PΩ � {standardizable probability spaces (G, 𝜇) on Ω}
and whose action on morphisms takes pullbacks of probability spaces:

P(𝑓 : Ω′ → Ω) (G, 𝜇) = 𝑓 ∗ (G, 𝜇)

Proof. Any [(𝐴, F , 𝜇), 𝑋 : Ω → 𝐴] ∈ PΩ gives rise to a standardizable probability space𝑋 ∗ (F , 𝜇). This operation respects the equivalence
class [𝐴,𝑋 ] by Lemma E.24, and is surjective by definition of standardizable probability space. It is natural in Ω by Lemma E.25. All that’s

left is to show injectivity. Fix [(𝐴, F , 𝜇), 𝑋 ], [(𝐵,G, 𝜈), 𝑌 ] with (𝑋 ∗F , 𝑋 ∗𝜇) = (𝑌 ∗G, 𝑌 ∗𝜈). Applying Lemma E.26 to 𝑋 and 𝑌 gives bijective

measure-algebra homomorphisms

alg(𝑋 ) : alg(𝐴, F , 𝜇) → alg(Ω, 𝑋 ∗F , 𝑋 ∗𝜇) and alg(𝑌 ) : alg(𝐵,G, 𝜈) → alg(Ω, 𝑌 ∗G, 𝑌 ∗𝜈).
The composition 𝑖∗ := alg(𝑋 )−1 alg(𝑌 ) : alg(𝐵,G, 𝜈) → alg(𝐴, F , 𝜇), well-typed because (𝑋 ∗F , 𝑋 ∗𝜇) = (𝑌 ∗G, 𝑌 ∗𝜈), satisfies alg(𝑋 )𝑖∗ =
alg(𝑌 ), so corresponds by Lemma B.26 to a Prob

std
-iso 𝑖 : (𝐴, F , 𝜇) → (𝐵,G, 𝜈) such that U(𝑖)𝑋 = 𝑌 , witnessing [(𝐴, F , 𝜇), 𝑋 ] =

[(𝐵,G, 𝜈), 𝑌 ]. □

Lemma E.28. For 𝑓 : (𝑋, F ,N) → (𝑌,G,M) a EMS
std

-map and (H , 𝜇), (H ′, 𝜇′) probability spaces on (𝑌,G,M), if 𝑓 ∗ (H , 𝜇) = 𝑓 ∗ (H ′, 𝜇′)
then (H , 𝜇) = (H ′, 𝜇′).

Proof. If 𝐻 ∈ H then 𝑓 −1 (𝐻 ) = 𝑓 −1 (𝐻 )△∅ ∈ 𝑓 ∗H = 𝑓 ∗H ′, so 𝑓 −1 (𝐻 ) = 𝑓 −1 (𝐻 ′)△𝑁 for some 𝐻 ′ ∈ H ′ and 𝑁 ∈ N , so

𝑓 −1 (𝐻 )△𝑓 −1 (𝐻 ′) = 𝑓 −1 (𝐻△𝐻 ′) = 𝑁 ∈ N , so 𝐻△𝐻 ′ ∈ M since 𝑓 negligible-preserving, so 𝐻△𝐻 ′ ∈ H ′ sinceH ′ ⊇ M, so 𝐻 ′△(𝐻△𝐻 ′) =
𝐻 ∈ H ′. This showsH ⊆ H ′; the converse inclusion follows from an analogous argument with the roles ofH ,H ′ swapped. ThusH = H ′.
Finally, if 𝐻 ∈ H then 𝑓 −1 (𝐻 ) = 𝑓 −1 (𝐻 ′)△𝑁 for some 𝐻 ′ ∈ H ′, 𝑁 ∈ N , so 𝜇 (𝐻 ) = 𝑓 ∗𝜇 (𝑓 −1 (𝐻 )) = 𝑓 ∗𝜇′ (𝑓 −1 (𝐻 ′)△𝑁 ) = 𝜇′ (𝐻 ′) = 𝜇 (𝐻 )
where the last equality follows from 𝑓 −1 (𝐻 )△𝑓 −1 (𝐻 ′) = 𝑁 ∈ N and 𝑓 negligible-preserving and negligibles(𝜇) = negligibles(𝜇′) =M. □

Lemma E.29. Across the equivalence Shatomic (EMS
std
) ≃ Shatomic (I𝜔EMSff

std
) given by Theorem E.13, the sheaf P ∈ Shatomic (EMS

std
) of

standardizable probability spaces described in Lemma E.27 corresponds to a sheaf P̂ ∈ Shatomic (I𝜔EMSff
std
) of standardizable probability

spaces that factor through maps with finite footprint:

P̂(𝑝 : I𝜔 → Ω) = {(G, 𝜈) a standardizable probability space on I𝜔 | there exists a unique (F , 𝜇) on Ω with (G, 𝜈) = 𝑝∗ (F , 𝜇)}

P̂(𝑞 : 𝑝′ → 𝑝) (𝑝∗ (F , 𝜇)) = (𝑞𝑝′)∗ (F , 𝜇)

Proof. The proof is similar to Lemma E.17. Let ·̃ be the equivalence Shatomic (EMS
std
) → Shatomic (I𝜔EMSff

std
); across this equivalence

and Lemma E.27, the sheaf P̃ ∈ Shatomic (I𝜔EMSff
std
) is

P̃(𝑝 : I𝜔 → Ω) = {standardizable probability spaces (G, 𝜇) on Ω}

P̃(𝑞 : 𝑝′ → 𝑝) (F , 𝜇) = 𝑞∗ (F , 𝜇)

We now show P̃ � P̂. For 𝑝 : I𝜔 → Ω an object of I𝜔EMSff
std

, let 𝛼𝑝 be the map P̃(𝑝) → P̂(𝑝) that sends (F , 𝜇) ∈ P̃(Ω) to 𝑝∗ (F , 𝜇) ∈ P̂(Ω).
This is well-defined: it produces elements of type P̂(𝑝) because (F , 𝜇) is unique by Lemma E.28. This automatically makes 𝛼𝑝 bijective,

with inverse the map sending (G, 𝜈) ∈ P̂(𝑝) to the unique (F , 𝜇) ∈ P̃(𝑝) with (G, 𝜈) = 𝑝∗ (F , 𝜇). Finally, 𝛼 is natural in 𝑝: if (F , 𝜇) ∈ P̃(𝑝)

https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=25
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and 𝑞 : 𝑝′ → 𝑝 a I𝜔EMSff
std

-morphism, then 𝛼𝑝′ (P̃(𝑞) (F , 𝜇)) = 𝛼𝑝′ (𝑞∗ (F , 𝜇)) = (𝑞𝑝′)∗ (F , 𝜇) = P̂(𝑞) (𝑝∗ (F , 𝜇)) = P̂(𝑞) (𝛼𝑝 (F , 𝜇)) by
Lemma E.25. □

Lemma E.30. Across the equivalence Shatomic (I𝜔EMSff
std
) ≃ G≪ Set given by Theorem E.13, the sheaf P̂ ∈ Shatomic (I𝜔EMSff

std
) defined in

Lemma E.29 corresponds to the AutEMS
std

I𝜔 -set of standardizable probability spaces on I𝜔 with finite footprint, with action (F , 𝜇) · 𝜋 =

𝜋∗ (F , 𝜇).

Proof. The proof is similar to Lemma E.18. Let ·̃ be the equivalence Shatomic (I𝜔EMSff
std
) → AutEMS

std
I𝜔 Set. The proofs involved in its

construction are: Theorem C.33 to pass from sheaves to

(
G≪

)
op

-sets, and then Lemma C.6 to pass from left to right actions. As in the proof

of Lemma E.18, the sheaf P̂ is sent to an G≪-set
˜̂P whose carrier is a colimit over P̂(𝑝) as 𝑝 ranges over the preorder on I𝜔EMSff

std
-objects of

the form I𝜔
𝑝
−→ 𝑝 with ordering relation (I𝜔

𝑝
−→ 𝑝) ⪯ (I𝜔

𝑞
−→ 𝑞) iff 𝑟𝑝 = 𝑞 for some (necessarily unique) 𝑟 . For I𝜔

𝑝
−→ 𝑝 ,

P̂(I𝜔
𝑝
−→ Ω) = {(G, 𝜈) on I𝜔 | there exists a unique (F , 𝜇) with (G, 𝜈) = 𝑝∗ (F , 𝜇)},

so all objects in the colimiting diagram are subsets of the set of standardizable probability spaces on I𝜔 . Ordering relations (I𝜔
𝑝
−→ Ω′) ⪯

(I𝜔
𝑞
−→ Ω), which is to say maps 𝑟 : Ω′ → Ω with 𝑟𝑝 = 𝑞, are sent by P̂ to inclusions

P̂(𝑞) ↩→ P̂(𝑝)
𝑞∗ (F , 𝜇) ↦→ (𝑟𝑝)∗ (F , 𝜇) = 𝑞∗ (F , 𝜇) since 𝑟𝑝 = 𝑞

so morphisms of the colimiting diagram are the canonical ones among subsets of the set of standardizable probability spaces on I𝜔 . Thus the

colimit defining the carrier of
˜̂
RV𝐴 is the union of all such subsets:˜̂P =

⋃(
I𝜔

𝑝−→Ω
)
∈I𝜔EMSff

std

{(G, 𝜈) standardizable on I𝜔 | (G, 𝜈) factors through 𝑝}

= {(G, 𝜈) standardizable on I𝜔 | (G, 𝜈) = 𝑝∗ (F , 𝜇) for some

(
I𝜔

𝑝
−→ Ω

)
∈ I𝜔EMSff

std
and (F , 𝜇) standardizable on Ω}

= {(G, 𝜈) standardizable on I𝜔 | (G, 𝜈) has finite footprint}

Further inspecting Theorem E.13, which transports sheaves on I𝜔EMSff
std

to left G≪-sets as described in Theorem C.33, shows P̂ corresponds

to the left G≪-action on equivalence classes [𝑝 ∈ I𝜔EMSff
std
, (G, 𝜈)) : P̂(𝑝)] defined by

𝜋 ·
[
(I𝜔

𝑝
−→ Ω), (G, 𝜈) : P̂(𝑝)

]
=

[
(I𝜔

𝑞
−→ Ω′), P̂(𝑟 ) (G, 𝜈)

]
where (𝑞, 𝑟 : 𝑝 → 𝑞) is an arbitrary I𝜔EMSff

std

op

-iso 𝜋 refines.

In this case, this action amounts to sending a standardizable probability space 𝑝∗ (F , 𝜇) (where 𝑝 is some map I𝜔 → Ω with finite footprint)

to (𝑟𝑞)∗ (F , 𝜇) where 𝑞, 𝑟 arbitrary such that 𝑟 iso and

I𝜔 I𝜔

Ω Ω′

𝜋

𝑝 𝑞

𝑟

commutes. This implies 𝑟𝑞 = 𝑝𝜋−1, so the action sends 𝑝∗ (F , 𝜇) to (𝑝𝜋−1)∗ (F , 𝜇) = (𝜋−1)∗𝑝∗ (F , 𝜇) (Lemma E.25). Since every element of
˜̂P

is of the form 𝑝∗ (F , 𝜇) for some 𝑝, F , 𝜇, this shows the left G≪-set corresponding to the sheaf P̂ across equivalence (2) of Theorem E.13 has

action (𝜋, (G, 𝜈)) ↦→ (𝜋−1)∗ (G, 𝜈). This corresponds under equivalence (3) of Theorem E.13 to the right G≪-action ((G, 𝜈), 𝜋) ↦→ 𝜋∗ (G, 𝜈),
as claimed. □

Theorem E.31. The enhanced measurable sheaf P corresponds to the absolutely continuous set P across the equivalence in Theorem E.13.

Proof. Combine Lemma E.29 and Lemma E.30. □

E.3 Separation as independent combination
Appendix D.2 established the following:

• The Day convolution P ⊗ P is a subobject of the sheaf P × P of pairs of probability spaces, consisting of those pairs which factor

through a tensor product.

• There is a map join : P ⊗ P→ P combining such pairs of probability spaces. Viewed as a partial map P × P→ P and in combination

with an ordering relation (⊑) : P × P → Prop, it forms a partially defined monoid (PDM) internal to the category of enhanced

measurable sheaves (Theorem D.17).
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By the equivalence of enhanced measurable sheaves and absolutely continuous sets in Theorem E.13, there is a corresponding PDM internal

to the category of absolutely continuous sets. We show this PDM is — modulo small differences regarding negligible sets — the PDM of Li

et al. [29], and in particular that the monoidal operation is independent combination.

Definition E.32 (independent sub-𝜎-algebras [19, 272A(b)]). Let (Ω, F , 𝜇) be a probability space. Two sub-𝜎-algebras G,H ⊆ F are

independent if 𝜇 (𝐺 ∩ 𝐻 ) = 𝜇 (𝐺)𝜇 (𝐻 ) for all 𝐺 ∈ G, 𝐻 ∈ H .

Definition E.33 (ordering on probability spaces). Let (Ω, F ,N) be a standard enhanced measurable space. Let ⊑ be the ordering on

standardizable probability spaces on Ω given by (G, 𝜇) ⊑ (G′, 𝜇′) iff G ⊆ G′ and 𝜇 = 𝜇′ |G .

Definition E.34 (independent combination). Let (Ω, F ,N) be a standard enhanced measurable space. Two standardizable probability

spaces (G, 𝜇), (H , 𝜈) on (Ω, F ,N) (Definition E.22) are independently combinable if there exists a standardizable probability space (K, 𝜌) on
(Ω, F ,N) such that (G, 𝜇) ⊑ (K, 𝜌) ⊒ (H , 𝜈) and G andH are independent sub-𝜎-algebras in the probability space (Ω,K, 𝜌). If (K, 𝜌) is
the smallest such standardizable probability space with respect to the ordering ⊑, then it is called the independent combination of (G, 𝜇) and
(H , 𝜈).

Compare Definition E.34 with Li et al. [29, Definition 2.2]: they are essentially the same, up to the 𝜎-ideal N of negligible sets and the

stipulation that probability spaces be standardizable.

Definition E.35 (empty probability space). LetN be the negligibles of I𝜔 . The empty probability space on I𝜔 , written emp, is the probability

space on I𝜔 with 𝜎-algebra generated by N and measure defined by 𝜇 (𝑁 ) = 0 for all 𝑁 ∈ N , standardizable because it arises via pullback

along the unique EMS
std

-map ! : (Ω, F ,N) → (1, {∅, 1}, ∅), finite-footprint because ! factors through proj
1..0.

In Appendix E.2.2 we showed that, across the equivalence in Theorem E.13, the sheaf P corresponds to the absolutely continuous set P of

standardizable probability spaces with finite footprint. In this section we extend this correspondence with the following:

• The map emp : 1→ P corresponds to the empty probability space emp : P (equivalently a map 1→ P in the category of absolutely

continuous sets) (Lemma E.36).

• The ordering relation ⊑: P × P→ Prop corresponds to the ordering ⊑ : P × P→ Prop (Lemma E.40).

• The Day convolution P ⊗ P corresponds to an absolutely continuous set P2⊥ of pairs of independently-combinable probability spaces

(Lemma E.44).

• The partial map join : P × P→ Prop corresponds to a partial map join : P × P→ Prop that sends independently-combinable pairs to

their independent combination (Theorem E.47).

Putting this together shows the PDM (P, join, emp, ⊑) internal to enhanced measurable sheaves corresponds to the PDM (P, join, emp, ⊑)
internal to absolutely continuous sets (Theorem E.48).

The recipe for showing a morphism of enhanced measurable sheaves corresponds to a morphism of absolutely continuous sets across the

equivalence in Theorem E.13 is as follows. For the sheaves 𝐹 introduced in Appendix D, the corresponding absolutely continuous set 𝐹 is a

union of the images of the embeddings 𝐹 (𝑝) : 𝐹Ω ↩→ 𝐹 I𝜔 for EMS
std

-maps 𝑝 : I𝜔 → Ω with finite footprint. A natural transformation of

enhanced measurable sheaves 𝛼 : 𝐹 → 𝐺 then corresponds to a map of absolutely continuous sets 𝑓 : 𝐹 → 𝐺 across the equivalence in

Theorem E.13 if for all Ω and 𝑝 : I𝜔 → Ω with finite footprint, it holds that

(
𝐹Ω

𝐹 (𝑝 )
↩−−−−→ 𝐹

𝑓
−→ 𝐺

)
=

(
𝐹Ω

𝛼Ω−−→ 𝐺Ω
𝐺 (𝑝 )
↩−−−−→ 𝐺

)
; i.e., 𝑓 behaves

like 𝛼 on elements 𝑥 ∈ 𝐹Ω when embedded into 𝐹 via 𝐹 (𝑝).

Lemma E.36. The constant function at the empty probability space emp defines a map 1→ P of absolutely continuous sets, and this map

corresponds to the map emp : 1→ P across the equivalence in Theorem E.13.

Proof. At stage Ω ∈ EMS
std

, the natural transformation emp picks out the equivalence class [1, ! : Ω → U1] ∈ PΩ where 1 ∈ Prob
std

is

the one-point probability space. For any EMS
std

-map 𝑝 : I𝜔 → Ω with finite footprint, the element P(𝑝) [1, !] of P corresponding to [1, !] is
the pullback (!𝑝)∗1 on I𝜔 ; this is precisely emp. □

Lemma E.37. Let (𝑋, F ,N) be an enhanced measurable space. Let 𝑓 : (𝑋, F ,N) → U(𝐴,G, 𝜇) and 𝑔 : (𝑋, F ,N) → U(𝐵,H , 𝜈) be two
EMS

std
-maps. If 𝑓 ∗ (G, 𝜇) ⊑ 𝑓 ∗ (H , 𝜈) then there exists a Prob

std
-map 𝑝 : (𝐵,H , 𝜈) → (𝐴,G, 𝜇) such that 𝑓 = U(𝑝)𝑔.

Proof. The inequality 𝑓 ∗ (G, 𝜇) ⊑ 𝑓 ∗ (H , 𝜈) implies a corresponding inclusion of measure algebras 𝑖 : alg(𝑓 ∗ (G, 𝜇)) ↩→ alg(𝑓 ∗ (H , 𝜈)).
By Lemma E.26, the maps 𝑓 and 𝑔 give rise to Prob

std
-isos

alg(𝑓 ) : alg(𝐴,G, 𝜇) ∼−→ alg(𝑓 ∗ (G, 𝜇)) and alg(𝑔) : alg(𝐵,H , 𝜈) ∼−→ alg(𝑔∗ (H , 𝜈)) .
The composite 𝑝∗ := alg(𝑔)−1𝑖 alg(𝑓 ) is a ProbAlg

std
-morphism alg(𝐴,G, 𝜇) → alg(𝐵,H , 𝜈) with alg(𝑔)𝑝∗ = 𝑖 alg(𝑓 ), so by Lemma B.26

corresponds to a Prob
std

-map 𝑝 : (𝐵,H , 𝜈) → (𝐴,G, 𝜇) such that 𝑓 = U(𝑝)𝑔 as needed. □

Lemma E.38. For any Ω ∈ EMS
std

and (𝐴, F , 𝜇), (𝐵,G, 𝜈) ∈ Prob
std

and EMS
std

-maps 𝑋 : Ω → U(𝐴, F , 𝜇) and 𝑌 : Ω → U(𝐵,G, 𝜈), the
following are equivalent:

https://www1.essex.ac.uk/maths/people/fremlin/chap27.pdf#page=10
https://johnm.li/lilac.pdf#page=10
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(1) 𝑋 = 𝑞𝑌 for some EMS
std

-map 𝑞 : (𝐵,G, 𝜈) → (𝐴, F , 𝜇)
(2) 𝑋 ∗ (F , 𝜇) ⊑ 𝑌 ∗ (G, 𝜈)

Proof. If𝑋 = 𝑞𝑌 then𝑋 ∗ (F , 𝜇) = 𝑞𝑌 ∗ (F , 𝜇) = 𝑌 ∗𝑞∗ (F , 𝜇)⊑𝑌 ∗ (G, 𝜈) where the final inequality follows from the fact that𝑞∗ (F , 𝜇)⊑(G, 𝜈)
as probability spaces on (𝐴,G, 𝜈). Conversely, if (2) holds then Lemma E.37 gives 𝑞 : (𝐵,G, 𝜈) → (𝐴, F , 𝜇) so 𝑞𝑌 = 𝑋 . □

Lemma E.39. If 𝑓 : (𝑋, F ,N) → (𝑌,G,M) a EMS
std

-map and (H , 𝜇), (H ′, 𝜇′) are two probability spaces on (𝑌,G,M), then (H , 𝜇) ⊑
(H ′, 𝜇′) iff 𝑓 ∗ (H , 𝜇) ⊑ 𝑓 ∗ (H ′, 𝜇′).

Proof. The left-to-right implication is straightforward. For the converse, suppose 𝑓 ∗ (H , 𝜇)⊑ 𝑓 ∗ (H ′, 𝜇′). ThenH ⊆ H ′, because if𝐻 ∈ H
then 𝑓 −1 (𝐻 ) ∈ 𝑓 ∗H , so 𝑓 −1 (𝐻 ) = 𝑓 −1 (𝐻 ′)△𝑁 for some 𝐻 ′ ∈ H ′, 𝑁 ∈ N by 𝑓 ∗H = 𝑓 ∗H ′, so 𝑓 −1 (𝐻 )△𝑓 −1 (𝐻 ′) = 𝑓 −1 (𝐻△𝐻 ′) = 𝑁 ∈ N ,

so 𝐻△𝐻 ′ ∈ N by 𝑓 negligible-preserving, so 𝐻 ′ = 𝐻 ′△(𝐻△𝐻 ′) ∈ H ′ byH ′ ⊇ N . And 𝜇′ |H = 𝜇, because if 𝐻 ∈ H then

𝜇 (𝐻 ) = 𝑓 ∗𝜇 (𝑓 −1 (𝐻 ))
= 𝑓 ∗𝜇′ (𝑓 −1 (𝐻 )) by 𝑓 ∗𝜇 = 𝑓 ∗𝜇′ |𝑓 ∗H
= 𝑓 ∗𝜇 (𝑓 −1 (𝐻 ′)△𝑁 ) for 𝐻 ′ ∈ H ′, 𝑁 ∈ N as above

= 𝜇′ (𝐻 ′)
= 𝜇′ (𝐻 ′△(𝐻△𝐻 ′)) where 𝐻△𝐻 ′ ∈ N as above

= 𝜇′ (𝐻 ′) because N = negligibles(𝜇′).

□

Lemma E.40. The ordering ⊑ is a map P × P→ Prop of absolutely continuous sets corresponding to the map ⊑: P × P→ Prop of enhanced

measurable sheaves across the equivalence in Theorem E.13.

Proof. For any Ω ∈ EMS
std

and EMS
std

-map 𝑝 : I𝜔 → Ω with finite footprint, two elements [(𝐴, F , 𝜇), 𝑋 ] and [(𝐵,G, 𝜈), 𝑌 ] of PΩ are

related by ⊑Ω iff𝑋 = 𝑞𝑌 for some EMS
std

-map𝑞 : (𝐵,G, 𝜈) → (𝐴, F , 𝜇), iff𝑋 ∗ (F , 𝜇)⊑𝑌 ∗ (G, 𝜈) by Lemma E.38, iff (𝑋𝑝)∗ (F , 𝜇)⊑ (𝑌𝑝)∗ (G, 𝜈)
by Lemma E.39, and (𝑋𝑝)∗ (F , 𝜇) and (𝑌𝑝)∗ (G, 𝜈) are the standardizable probability spaces on I𝜔 corresponding to [𝐴,𝑋 ] and [𝐵,𝑌 ] across
the equivalence in Theorem E.13. □

Definition E.41. Let P2⊥ be the AutEMS
std

I𝜔 -set of pairs ((G, 𝜇), (H , 𝜈)) ∈ P× P for which (G, 𝜇) and (H , 𝜈) are independently combinable,

with action inherited from P × P.

Lemma E.42. If (H , 𝜇) and (K, 𝜈) are independently combinable on a standard enhanced measurable space (𝑌,G,M) and 𝑓 is a EMS
std

-map

(𝑋, F ,N) → (𝑌,G,M), then 𝑓 ∗ (H , 𝜇) and 𝑓 ∗ (K, 𝜈) are independently combinable on (𝑋, F ,N).

Proof. Suppose (L, 𝜌) witnesses the independent combinability of (H , 𝜇) and (K, 𝜈), so H ⊆ L ⊇ K and 𝜇 = 𝜌 |H and 𝜈 = 𝜌 |K and

𝜌 (𝐻 ∩ 𝐾) = 𝜌 (𝐻 )𝜌 (𝐾) for all 𝐻 ∈ H , 𝐾 ∈ K . It is straightforward to show 𝑓 ∗H ⊆ 𝑓 ∗L ⊇ 𝑓 ∗K and 𝑓 ∗H = 𝑓 ∗L|𝑓 ∗H and 𝑓 ∗K = 𝑓 ∗L|𝑓 ∗K .
Fix arbitrary 𝑓 −1 (𝐻 )△𝑁 ∈ 𝑓 ∗H and 𝑓 −1 (𝐾)△𝑁 ′ ∈ 𝑓 ∗K for 𝐻 ∈ H and 𝐾 ∈ K and 𝑁, 𝑁 ′ ∈ N . Since ∩ distributes over △,

𝑓 ∗𝜌 ((𝑓 −1 (𝐻 )△𝑁 ) ∩ (𝑓 −1 (𝐾)△𝑁 ′)) = 𝑓 ∗𝜌 ((𝑓 −1 (𝐻 ) ∩ 𝑓 −1 (𝐾))△ (𝑓 −1 (𝐻 ) ∩ 𝑁 ′)△(𝑁 ∩ 𝑓 −1 (𝐾))△(𝑁△𝑁 ′)︸                                                  ︷︷                                                  ︸
∈N

)

= 𝑓 ∗𝜌 (𝑓 −1 (𝐻 ∩ 𝐾)) because N = negligibles(𝑓 ∗𝜌)
= 𝜌 (𝐻 ∩ 𝐾)
= 𝜌 (𝐻 )𝜌 (𝐾)
= 𝑓 ∗𝜌 (𝑓 −1 (𝐻 )△𝑁 ) 𝑓 ∗𝜌 (𝑓 −1 (𝐾)△𝑁 ′)

so 𝑓 ∗H and 𝑓 ∗K are independent sub-𝜎-algebras in (𝑋, 𝑓 ∗L, 𝜌). □

Lemma E.43. For any Ω ∈ EMS
std

and (𝐴, F , 𝜇), (𝐵,G, 𝜈) ∈ Prob
std

and EMS
std

-maps 𝑋 : Ω → U(𝐴, F , 𝜇) and 𝑌 : Ω → U(𝐵,G, 𝜈), the
following are equivalent:

(1) The pairs ((𝐴, F , 𝜇), 𝑋 ) and ((𝐵,G, 𝜈), 𝑌 ) factor through a tensor product; i.e., there exist Ω1,Ω2 and 𝑓 : Ω → Ω1 ⊗ Ω2 and

𝑋 ′ : Ω1 → U(𝐴, F , 𝜇) and 𝑌 ′ : Ω2 → U(𝐵,G, 𝜈) with 𝑋 = 𝑋 ′ fst 𝑓 and 𝑌 = 𝑌 ′ snd 𝑓 .
(2) The pullbacks 𝑋 ∗ (F , 𝜇) and 𝑌 ∗ (G, 𝜈) are independently combinable.

Moreover, in the case where both hold, the pullback ((𝑋 ′ ⊗ 𝑌 ′) 𝑓 )∗ (F ⊗ G, 𝜇 ⊗ 𝜈) of the tensor product (𝐴, F , 𝜇) ⊗ (𝐵,G, 𝜈) along the

composite

(
Ω

𝑓
−→ Ω1 ⊗ Ω2

𝑋 ′⊗𝑌 ′−−−−−−→ 𝐴 ⊗ 𝐵
)
is the independent combination of 𝑋 ∗ (F , 𝜇) and 𝑌 ∗ (G, 𝜈).
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Proof. Suppose (1). Form the tensor product (𝐴×𝐵, F ⊗G, 𝜇⊗𝜈) of (𝐴, F , 𝜇) and (𝐵,G, 𝜈), so that𝑋 = fst(𝑋 ′⊗𝑌 ′) 𝑓 and𝑌 = snd(𝑋 ′⊗𝑌 ′) 𝑓 .
By construction the sub-𝜎-algebras fst∗F and snd

∗G are independent in the tensor product and the measure 𝜇 ⊗ 𝜈 restricts to fst
∗𝜇 on

fst
∗F and snd

∗𝜈 on snd
∗G, so fst

∗ (F , 𝜇) and snd
∗ (G, 𝜈) are independently combinable in (𝐴 × 𝐵, F ⊗ G, negligibles(𝜇 ⊗ 𝜈)). Hence

𝑋 ∗ (F , 𝜇) = (fst(𝑋 ′ ⊗ 𝑌 ′) 𝑓 )∗ (F , 𝜇) and 𝑌 ∗ (G, 𝜈) = (snd(𝑋 ′ ⊗ 𝑌 ′) 𝑓 )∗ (G, 𝜈) are independently combinable in Ω by Lemmas E.25 and E.42.

Conversely, suppose (2), and let (H , 𝜌) be the standardizable probability space on Ω witnessing independent combinability of 𝑋 ∗ (F , 𝜇)
and 𝑌 ∗ (G, 𝜈). There is a Prob

std
-map 𝑔 : (Ω,H , 𝜌) → (𝐴, F , 𝜇) ⊗ (𝐵,G, 𝜈) defined by 𝑓 (𝜔) = (𝑋 (𝜔), 𝑌 (𝜔)), measure-preserving because

𝜌 (𝑔−1 (𝐹 × 𝐺)) = 𝜌 (𝑋 −1 (𝐹 ) ∩ 𝑌 −1 (𝐺)) = 𝜌 (𝑋 −1 (𝐹 ))𝜌 (𝑌 −1 (𝐺)) = 𝜇 (𝐹 )𝜈 (𝐺) = (𝜇 ⊗ 𝜈) (𝐹 × 𝐺) for all rectangles 𝐹 × 𝐺 ∈ F ⊗ G.
Moreover, 𝑔 satisfies fst 𝑔 = 𝑋 and snd 𝑔 = 𝑌 , so U𝑔 is a EMS

std
-map showing that [𝐴,𝑋 ] and [𝐵,𝑌 ] factor through the tensor product

(𝐴, F , negligibles(𝜇)) ⊗ (𝐵,G, negligibles(𝜈)).
It only remains to show, in case (1) and (2) both hold, that ((𝑋 ′ ⊗ 𝑌 ′) 𝑓 )∗ (F ⊗ G, 𝜇 ⊗ 𝜈) is the independent combination; i.e., that it is

the ⊑-smallest standardizable probability space on Ω witnessing the independent combinability of 𝑋 ∗ (F , 𝜇) and 𝑌 ∗ (G, 𝜈). Suppose (H , 𝜌)
is another such witness. The map 𝑔 : (Ω,H , 𝜌) → (𝐴, F , 𝜇) ⊗ (𝐵,G, 𝜈) constructed above is equal to (𝑋 ′ ⊗ 𝑌 ′) 𝑓 as a set-function, since
fst 𝑔 = 𝑋 = fst(𝑋 ′ ⊗ 𝑌 ′) 𝑓 and snd 𝑔 = 𝑌 = snd(𝑋 ′ ⊗ 𝑌 ′) 𝑓 . This shows (𝑋 ′ ⊗ 𝑌 ′) 𝑓 is measure-preserving as a map with domain (Ω,H , 𝜌),
so ((𝑋 ′ ⊗ 𝑌 ′) 𝑓 )∗ (F ⊗ G, 𝜇 ⊗ 𝜈) ⊑ (H , 𝜌) as required. □

Lemma E.44. The AutEMS
std

I𝜔 -set P2⊥ is an absolutely continuous set corresponding to the enhanced measurable sheaf P ⊗ P across the

equivalence in Theorem E.13.

Proof. By Lemma D.9, each (P ⊗ P) (Ω) is a subset of PΩ × PΩ consisting of the pairs of probability spaces on Ω that factor through a

tensor product. Thus the corresponding absolutely continuous set is a subset of the absolutely continuous set P × P of pairs of standardizable

probability spaces with finite footprint. To determine this subset, it suffices to compute the image of the inclusion P ⊗ P ↩→ P × P across

the equivalence in Theorem E.13. For any Ω ∈ EMS
std

and EMS
std

-map 𝑝 : I𝜔 → Ω with finite footprint, this inclusion sends a pair

((G, 𝜇), (H , 𝜈)) of probability spaces on Ω that factor through a tensor product to (𝑝∗ (G, 𝜇), 𝑝∗ (H , 𝜈)), a pair of independently-combinable

probability spaces on I𝜔 with finite footprint. This hits every pair of independently-combinable probability spaces with finite footprint by

Lemma E.43, so the image of the inclusion P ⊗ P ↩→ P × P corresponds to P2⊥ as claimed. □

Definition E.45. Let (G, 𝜇) and (H , 𝜈) be two standardizable probability spaces on I𝜔 with finite footprint. If (G, 𝜇) and (H , 𝜈) are
independently combinable, let join((G, 𝜇), (H , 𝜈)) be their independent combination.

Lemma E.46. Let 𝑓 : (𝑋, F ,N) → (𝑌,G,M) be a EMS
std

-map. If (L, 𝜌) is the independent combination of (H , 𝜇) and (K, 𝜈) then 𝑓 ∗ (L, 𝜌)
is the independent combination of 𝑓 ∗ (H , 𝜇) and 𝑓 ∗ (K, 𝜈).

Proof. Let ℎ : 𝑌 → U𝐴 and 𝑘 : 𝑌 → U𝐵 be the EMS
std

-maps witnessing standardizability of (H , 𝜇) and (K, 𝜈), so (H , 𝜇) = ℎ∗𝐴
and (K, 𝜈) = 𝑘∗𝐵. By Lemma E.43, the independent combination (L, 𝜌) is the pullback 𝑝∗ (𝐴 ⊗ 𝐵), where 𝑝 : 𝑌 → U(𝐴 ⊗ 𝐵) is the map

defined by 𝑝 (𝑦) = (ℎ(𝑦), 𝑘 (𝑦)). Now 𝑓 ∗ (H , 𝜇) and 𝑓 ∗ (K, 𝜈) arise via pullback from ℎ𝑓 and 𝑘 𝑓 respectively, so by Lemma E.43 again their

independent combination is 𝑞∗ (𝐴 ⊗ 𝐵) where 𝑞 : 𝑋 → U(𝐴 ⊗ 𝐵) is the map defined by 𝑞(𝑥) = (ℎ(𝑓 (𝑥)), 𝑘 (𝑓 (𝑥))). By definition 𝑞 = 𝑝 𝑓 , so

𝑞∗ (𝐴 ⊗ 𝐵) = (𝑝𝑓 )∗ (𝐴 ⊗ 𝐵) = 𝑓 ∗𝑝∗ (𝐴 ⊗ 𝐵) = 𝑓 ∗ (L, 𝜌) as claimed. □

Theorem E.47. The operation join is a map P2⊥ → P of absolutely continuous sets corresponding to the map join : P ⊗ P→ P of enhanced

measurable sheaves across the equivalence in Theorem E.13.

Proof. Fix Ω ∈ EMS
std

and 𝑝 : I𝜔 → Ω a EMS
std

-map with finite footprint. Let ((F ′, 𝜇′), (G′, 𝜈′)) ∈ P ⊗ P be a pair of standardizable

probability spaces on Ω that factor through a tensor product, so (F ′, 𝜇′) = (𝑋 fst 𝑓 )∗ (F , 𝜇) and (G′, 𝜈′) = (𝑌 snd 𝑓 )∗ (G, 𝜈) for standard
probability spaces (𝐴, F , 𝜇), (𝐵,G, 𝜈) and standard enhanced measurable spaces Ω1,Ω2 and EMS

std
-maps 𝑓 : Ω → Ω1 ⊗ Ω2 and 𝑋 : Ω1 → 𝐴

and 𝑌 : Ω1 → 𝐵. The map join sends ((F ′, 𝜇′), (G′, 𝜈′)) to ((𝑋 ⊗ 𝑌 ) 𝑓 )∗ (F ⊗ G, 𝜇 ⊗ 𝜈) by Note D.11, their independent combination by

Lemma E.43, so 𝑝∗ ((𝑋 ⊗ 𝑌 ) 𝑓 )∗ (F ⊗ G, 𝜇 ⊗ 𝜈) is the independent combination of 𝑝∗ (F ′, 𝜇′) and 𝑝∗ (G′, 𝜈′) by Lemma E.46. Putting this

together gives 𝑝∗join((F ′, 𝜇′), (G′, 𝜈′)) = join(𝑝∗ (F ′, 𝜇′), 𝑝∗ (G′, 𝜈′)), so join corresponds to join across the equivalence in Theorem E.13

as claimed. □

Theorem E.48. The PDM (P, join, emp, ⊑) internal to enhanced measurable sheaves corresponds to the PDM (P, join, emp, ⊑) internal to
absolutely continuous sets across the equivalence in Theorem E.13.

Proof. Theorem E.31 shows P corresponds to P, Theorem E.47 shows join corresponds to join, Lemma E.36 shows emp corresponds to

emp, and Lemma E.40 shows ⊑ corresponds to ⊑. □
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