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* Q: Why isn't separation just about product spaces?
* A: Actually, It Is, up to a suitable equivalence of categories
* \We also work out this correspondence for discrete probabillity:

EMS, a Sety

Lilac's iIndependent
~ combination, for
discrete probability

Independence via
product spaces
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In Shatomic(s)’

Res = li_r)n S(—, |7|) is a sheaf of resources
r:Core(R)

Res ® Res Is a sheaf of separated resources

Lemma C.23
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» Under suitable conditions, one can find an object s_, that
(S) ~ Aut(s,)-sets.

produces an equivalence [ : Sh,, ..

* This equivalence gives a correspondence

Res @ Res I(Res @ Res)
IN ~ IN
Sh, _..(S) Aut(s_, )-sets.
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Theorem 3.21
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e This yields i : (EMS.y) =~ Aut[0,]1]*-sets
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e Across this equivalence,

iIndependently combinable pairs of

. R R —
(Res @ Res) {finite—width probability spaces on [0,1]“

Theorem 4.24

j
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See the paper for...

* Precise definitions
e Separation logic details

 Constructing suitable s__s

e Properties of EMS. 4 (monoidal, atomic, subcanonical)
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Thanks!
EMS ad Set
Independence via -~ Lilac's independent
product spaces combination’
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o (FinInj™®, +, @) is a monoidal category.

atomic

» Yields a monoidal structure (@), I) on Sch, by Day convolution.
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The folklore: separation logic in Sch
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e The convolution H & H is a sheaf of separated heaps:
(H&® H)(L) = {(h,h') | dom(h) N dom(h') = D}
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e Heaps: H =N —.  Z

e Separated heaps:

Hge, = {(h,h) € Hx H | dom(h) N dom(h') = @}

* These again form the basic ingredients of separation logic.
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Saunders Mac Lane
leke Moerdijk

- Theorem 111.9.2: Sch ~ Nom.

Sheaves Iin
Geometry
and Logic

A First Introduction to
Topos Theory
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* Across this equivalence,

Sch

H corresponds to
H®H  corresponds to

Nom

H
Hsep
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Our probabilistic analog: the discrete case

e Key lemma:

N ---3 N [0,1] --=+ [0,1]
T T becomes i i
A ‘ﬁ B X 4f» Y

* Proof roughly boils down to: any two nonnegligible measurable
subsets of [0,1 | are measurably isomorphic.
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Our probabilistic analog: the continuous case

e Key lemma:

10,1] -~ [0,1] [0,1]° -~ [0,1]*
i i becomes l l
X ——»7Y X ———Y

* Proof requires some heavy-duty measure theory.
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