
A Nominal Approach to 
Probabilistic Separation Logic
John Li 

li.john@northeastern.edu

Amal Ahmed

amal@ccs.neu.edu

Steven Holtzen

s.holtzen@northeastern.edu

1

Philip Johnson-Freyd

pajohn@sandia.gov

Jon Aytac

jmaytac@sandia.gov



Lilac is a probabilistic separation logic

2



Lilac is a probabilistic separation logic

3

X ∼ Ber(1/2) Y ∼ Ber(1/2)*



Lilac is a probabilistic separation logic

3

X ∼ Ber(1/2) Y ∼ Ber(1/2)*

 and  are independent random variablesX Y



• Separate probability spaces into independent subspaces:

The key idea

4



⊎

• Separate probability spaces into independent subspaces:

The key idea

4

⊨
⊨

⊨
P Q*

P

Q
if



(ℱ, μ) (𝒢, ν)
(ℱ, μ)

(𝒢, ν)

• Separate probability spaces into independent subspaces:

The key idea

4

⊨
⊨

⊨
P Q*

P

Q
if



(ℱ, μ) (𝒢, ν)
(ℱ, μ)

(𝒢, ν)

• Separate probability spaces into independent subspaces:

The key idea

4

⊨
⊨

⊨
P Q*

P

Q
if

 are -algebras,

 are probability measures
ℱ, 𝒢 σ

μ, ν



(ℱ, μ) (𝒢, ν)
(ℱ, μ)

(𝒢, ν)

• Separate probability spaces into independent subspaces:

The key idea

4

⊨
⊨

⊨
P Q*

P

Q
if

independent combination

("disjoint union for spaces")



?!

5



?!

5

• Q: Why isn't separation just about product spaces?




?!

5

true false

true

false

• Q: Why isn't separation just about product spaces?




• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

This paper: a nominal answer

6



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

This paper: a nominal answer

6

EMS
"enhanced measurable 

sheaves"



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

"absolutely continuous sets"

This paper: a nominal answer

6

Set≪EMS
"enhanced measurable 

sheaves"



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

independence via 
product spaces

This paper: a nominal answer

6

Set≪EMS



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

independence via 
product spaces

Lilac's independent 
combination*

This paper: a nominal answer

6

Set≪EMS



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

independence via 
product spaces

Lilac's independent 
combination*

This paper: a nominal answer

6

Set≪≃EMS



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

independence via 
product spaces

Lilac's independent 
combination*

This paper: a nominal answer

6

Set≪≃EMS

∼



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

• We also work out this correspondence for discrete probability:

This paper: a nominal answer

7



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

• We also work out this correspondence for discrete probability:

This paper: a nominal answer

7

EMSd
"discrete enhanced 

measurable sheaves"



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

• We also work out this correspondence for discrete probability:

This paper: a nominal answer

7

"discrete absolutely 
continuous sets"

Set≪dEMSd
"discrete enhanced 

measurable sheaves"



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

• We also work out this correspondence for discrete probability:

This paper: a nominal answer

7

Set≪d≃EMSd



• Q: Why isn't separation just about product spaces?

• A: Actually, it is, up to a suitable equivalence of categories

• We also work out this correspondence for discrete probability:

This paper: a nominal answer

7

independence via 
product spaces

Lilac's independent 
combination, for 

discrete probability
∼

Set≪d≃EMSd



• Our results are probabilistic analogs of the following fact:

The folklore

8



• Our results are probabilistic analogs of the following fact:

The folklore

8

separation = 
Day convolution wrt 

coproduct

Sch = Shatomic(Injop
<ω)



• Our results are probabilistic analogs of the following fact:

The folklore

8

separation = heaps 
with disjoint domain

-setsNom = Aut<ω(ℕ)

separation = 
Day convolution wrt 

coproduct

Sch = Shatomic(Injop
<ω)



• Our results are probabilistic analogs of the following fact:

The folklore

8

separation = heaps 
with disjoint domain

-setsNom = Aut<ω(ℕ)≃
separation = 

Day convolution wrt 
coproduct

Sch = Shatomic(Injop
<ω)



• Our results are probabilistic analogs of the following fact:

The folklore

8

∼ separation = heaps 
with disjoint domain

-setsNom = Aut<ω(ℕ)≃
separation = 

Day convolution wrt 
coproduct

Sch = Shatomic(Injop
<ω)



A more abstract view: resources to atomic sheaves

9



A more abstract view: resources to atomic sheaves

9

R
symmetric monoidal

"resources"



A more abstract view: resources to atomic sheaves

9

R S
symmetric monoidal, atomic, ...

"resource shapes"



A more abstract view: resources to atomic sheaves

9

R S
monoidal

| ⋅ | :
"forget the contents of the resource"



A more abstract view: resources to atomic sheaves

9

R S
monoidal

| ⋅ | :

In ,Shatomic(S)

is a sheaf of resourcesRes = lim→
r:Core(R)

S(−, |r | )

Res ⊗ Res is a sheaf of separated resources



A more abstract view: resources to atomic sheaves

9

R S
monoidal

| ⋅ | :
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is a sheaf of resourcesRes = lim→
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S(−, |r | )
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• Under suitable conditions, one can find an object  that 
produces an equivalence . 

s∞
i : Shatomic(S) ≃ Aut(s∞)-sets

• This equivalence gives a correspondence 
 
                                               
                   in                                                  in 
                                               .

Res ⊗ Res i(Res ⊗ Res)
∼

Shatomic(S) Aut(s∞)-sets
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• This yields  
 

i : Shatomic(EMSstd) ≃ Aut[0,1]ω-sets

• Across this equivalence,
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Theorem 4.24



• Precise definitions

• Separation logic details


• Constructing suitable s


• Properties of  (monoidal, atomic, subcanonical)

s∞

EMSstd

See the paper for...
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independence via 
product spaces

Lilac's independent 
combination*

Thanks!
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• These form the basic ingredients of separation logic.

ℍ(L) = L ⇀fin ℤ
ℍ ⊗ ℍ
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• Across this equivalence,
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ℍ ⊗ ℍ corresponds to ℍsep
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• Proof requires some heavy-duty measure theory. 
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