# A Nominal Approach to Probabilistic Separation Logic

John Li Jon Aytac li.john@northeastern.edu jmaytac@sandia.gov

> Amal Ahmed amal@ccs.neu.edu



Philip Johnson-Freyd pajohn@sandia.gov

Steven Holtzen s.holtzen@northeastern.edu



# Lilac is a probabilistic separation logic



# Lilac is a probabilistic separation logic

 $X \leftarrow \text{flip 1/2};$  $Y \leftarrow \text{flip 1/2};$  $X \sim \text{Ber}(1/2) * Y \sim \text{Ber}(1/2)$ 



# Lilac is a probabilistic separation logic

X and Y are independent random variables

 $X \leftarrow \mathsf{flip} 1/2;$  $Y \leftarrow \mathsf{flip} 1/2;$  $X \sim \text{Ber}(1/2) * Y \sim \text{Ber}(1/2)$ 



• Separate probability spaces into independent subspaces:



Separate probability spaces into independent subspaces:





Separate probability spaces into independent subspaces:

#### $(\mathcal{F},\mu) \models P$ $(\mathcal{F},\mu) \bullet (\mathcal{G},\nu) \models P * Q$ if $(\mathcal{G},\nu) \models Q$



Separate probability spaces into independent subspaces:

 $(\mathcal{F},\mu) \bullet (\mathcal{G},\nu) \models P * Q$  if  $\mathcal{F}, \mathcal{G}$  are  $\sigma$ -algebras,  $\mu, \nu$  are probability measures

# $(\mathcal{F},\mu) \models P$ $(\mathcal{G},\nu) \models Q$



Separate probability spaces into independent subspaces:

# $(\mathcal{F},\mu) \bullet (\mathcal{G},\nu) \vDash P \ast Q$ if

independent combination ("disjoint union for spaces")

# $(\mathcal{F},\mu) \models P$ $(\mathcal{G},\nu)\models Q$







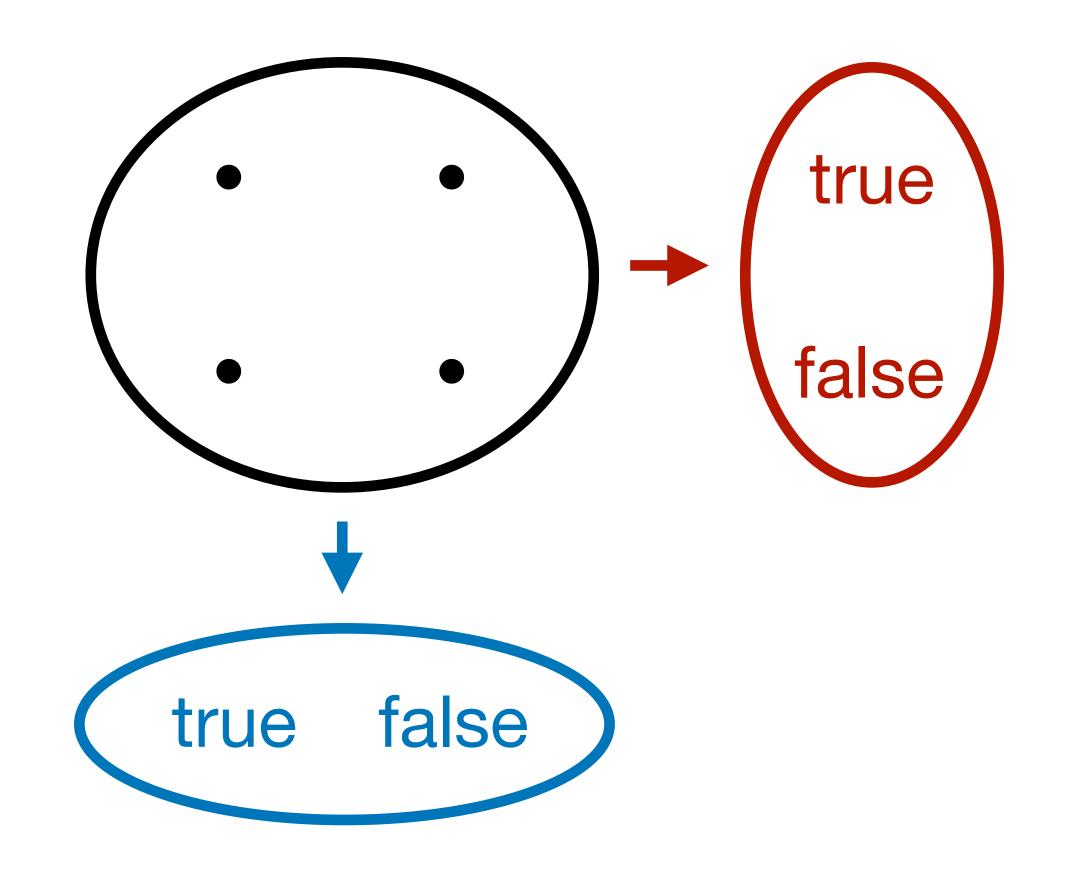
?!

• Q: Why isn't separation just about product spaces?



?!

#### Q: Why isn't separation just about product spaces?





- Q: Why isn't separation just about product spaces? • A: Actually, it is, up to a suitable equivalence of categories



- Q: Why isn't separation just about product spaces? • A: Actually, it is, up to a suitable equivalence of categories

### EMS

"enhanced measurable sheaves"



- Q: Why isn't separation just about product spaces? • A: Actually, it is, up to a suitable equivalence of categories

### EMS

"enhanced measurable sheaves"



"absolutely continuous sets"



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories

### EMS

#### independence via product spaces

#### bout product spaces? ble equivalence of categories





- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories

### EMS

#### independence via product spaces

#### bout product spaces? ble equivalence of categories



# Lilac's independent combination\*



- Q: Why isn't separation just about product spaces? • A: Actually, it is, up to a suitable equivalence of categories

# EMS

independence via product spaces



Lilac's independent combination\*



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories

 $\sim$ 

# EMS

independence via product spaces



Lilac's independent combination\*



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories
- We also work out this correspondence for discrete probability:



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories
- We also work out this correspondence for discrete probability:

### **EMS**<sub>d</sub>

"discrete enhanced measurable sheaves"



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories
- We also work out this correspondence for discrete probability:

### **EMS**<sub>d</sub>

"discrete enhanced measurable sheaves"



"discrete absolutely continuous sets"



- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories
- We also work out this correspondence for discrete probability:

### EMS<sub>d</sub>





- Q: Why isn't separation just about product spaces?
- A: Actually, it is, up to a suitable equivalence of categories
- We also work out this correspondence for discrete probability:

# EMS<sub>d</sub>

#### independence via product spaces



Lilac's independent combination, for discrete probability



Our results are probabilistic analogs of the following fact:



Our results are probabilistic analogs of the following fact:

# $Sch = Sh_{atomic}(Inj^{op})$

#### separation = Day convolution wrt coproduct



• Our results are probabilistic analogs of the following fact:

# $Sch = Sh_{atomic}(Inj^{op})$

#### separation = Day convolution wrt coproduct

#### Nom = Aut<sub>(M</sub>)-sets

separation = heaps with disjoint domain



• Our results are probabilistic analogs of the following fact:

# $Sch = Sh_{atomic}(Inj^{op})$

#### separation = Day convolution wrt coproduct

 $\sim$ 

#### Nom = Aut<sub>(M</sub>)-sets

separation = heaps with disjoint domain



• Our results are probabilistic analogs of the following fact:

# $Sch = Sh_{atomic}(Inj^{op})$

#### separation = Day convolution wrt coproduct

 $\sim$ 

 $\sim$ 

#### Nom = Aut<sub>(M</sub>)-sets

separation = heaps with disjoint domain







#### R

### symmetric monoidal

"resources"





R

#### S

#### symmetric monoidal, atomic, ... "resource shapes"





· I : R →

"forget the contents of the resource"

monoidal





· I : R →

# $\ln Sh_{atomic}(S),$

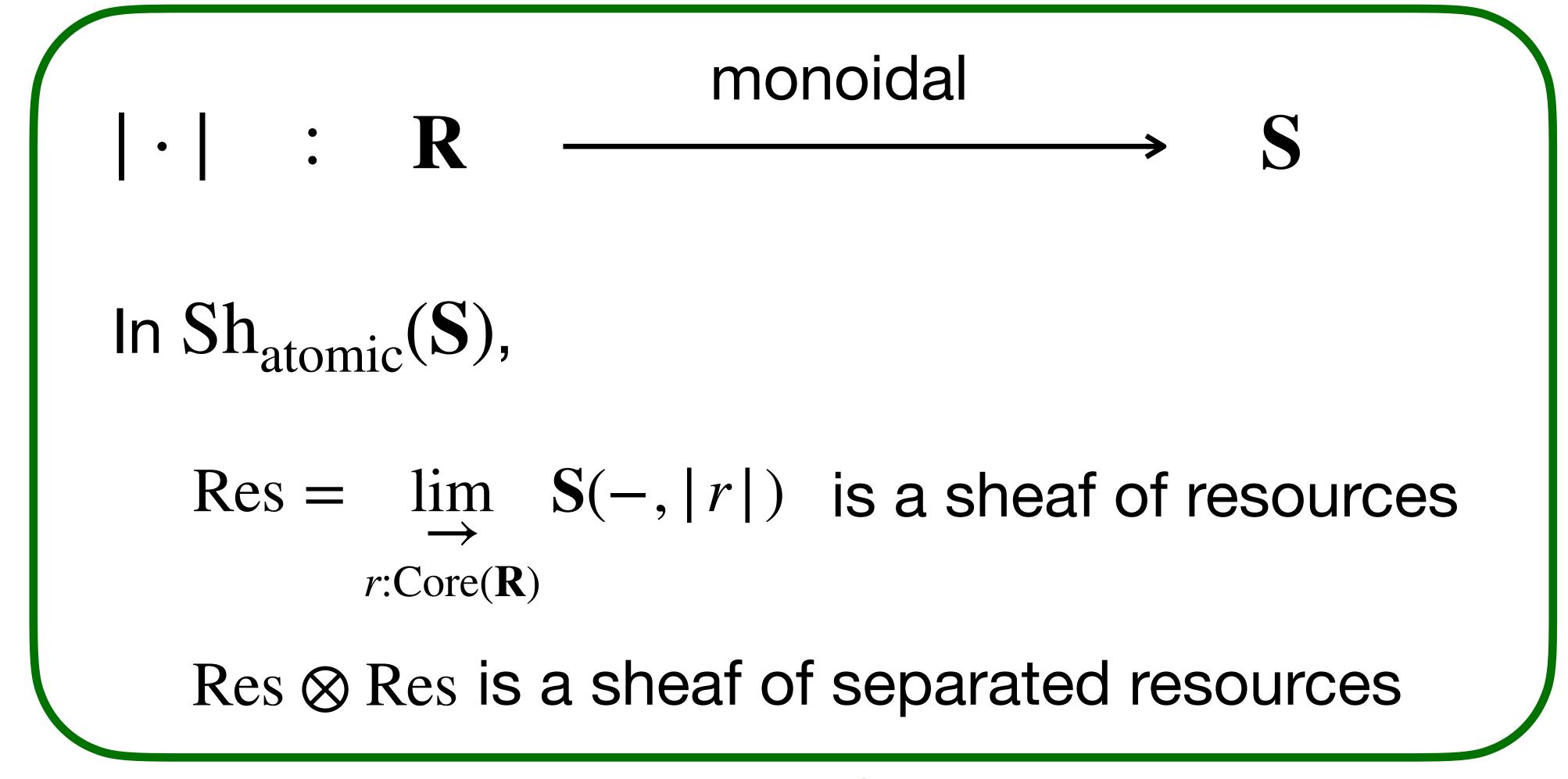
Res =  $\lim_{\to} S(-, |r|)$  is a sheaf of resources *r*:Core(**R**)

Res  $\otimes$  Res is a sheaf of separated resources

#### monoidal







Lemma C.23





### A more abstract view: atomic sheaves to G-sets

• Under suitable conditions, one can find an object  $s_{\infty}$  that

produces an equivalence  $i : Sh_{atomic}(S) \simeq Aut(s_{\infty})$ -sets.

10

### A more abstract view: atomic sheaves to G-sets

 $\sim$ 

- Under suitable conditions, one can find an object  $s_{\infty}$  that produces an equivalence  $i : Sh_{atomic}(S) \simeq Aut(s_{\infty})$ -sets.
- This equivalence gives a correspondence

 $\text{Res} \otimes \text{Res}$ in Sh<sub>atomic</sub>(S)

 $i(\text{Res} \otimes \text{Res})$ IN  $\operatorname{Aut}(s_{\infty})$ -sets.

• Resource = discrete probability space, shape = countable set

• Resource = discrete probability space, shape = countable set

•  $|\cdot| = \text{the functor } \operatorname{Prob}_{\leq \omega} \rightarrow \operatorname{Surj}_{<\omega}$  that forgets measures

- $s_{\infty} = [0,1]$

• Resource = discrete probability space, shape = countable set

•  $|\cdot| = \text{the functor } \operatorname{Prob}_{\leq \omega} \to \operatorname{Surj}_{<\omega}$  that forgets measures

• This yields  $i : Sh_{atomic}(Surj_{<\omega}) \simeq Aut[0,1]$ -sets

EMSd

• This yields  $i : Sh_{atomic}(Surj_{<\omega}) \simeq Aut[0,1]$ -sets

• This yields  $i : Sh_{atomic}(Surj_{<\omega}) \simeq Aut[0,1]$ -sets

# $\mathbf{EMS}_{d}$ $\mathbf{Set}_{d}^{\ll}$

# Our probabilistic analog: the discrete case • This yields $i : \operatorname{Sh}_{\operatorname{atomic}}(\operatorname{Surj}_{\leq \omega}) \simeq \operatorname{Aut}[0,1]$ -sets $\operatorname{EMS}_{d} \qquad \operatorname{Set}_{d}^{\ll}$

- Across this equivalence,

# $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{discrete probability spaces on } [0,1] \end{cases}$

# Our probabilistic analog: the discrete case • This yields $i : Sh_{atomic}(Surj_{\leq \omega}) \simeq Aut[0,1]$ -sets EMS<sub>d</sub> Set<sub>d</sub><sup> $\ll$ </sup>

- Across this equivalence,

 $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{discrete probability spaces on } [0,1] \end{cases}$ discrete independent combination comes from the monoidal structure on  $Prob_{<\omega}$ 

• This yields  $i : Sh_{atomic}(Surj_{<\omega}) \simeq Aut[0,1]$ -sets

- Across this equivalence,

# $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{discrete probability spaces on } [0,1] \end{cases}$

### Theorem 3.21





 Resource = standard probability space, Resource shape = enhanced measurable space



- Resource = standard probability space, Resource shape = enhanced measurable space
- $|\cdot| = \text{the functor } \operatorname{Prob}_{std} \rightarrow \operatorname{EMS}_{std}$  that forgets measures



- Resource = standard probability space, Resource shape = enhanced measurable space
- $s_{\infty} = [0,1]^{\omega}$
- $|\cdot| = \text{the functor } \operatorname{Prob}_{std} \rightarrow \operatorname{EMS}_{std}$  that forgets measures



• This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets



• This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets

EMS



• This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets

EMS





- This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets EMS
- Across this equivalence,

# Set≪

# $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{finite-width probability spaces on } [0,1]^{\omega} \end{cases}$



- This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets EMS
- Across this equivalence,
- - Lilac's independent combination comes from the monoidal structure on Prob<sub>std</sub>

# Set≪

# $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{finite-width probability spaces on } [0,1]^{\omega} \end{cases}$



• This yields  $i : Sh_{atomic}(EMS_{std}) \simeq Aut[0,1]^{\omega}$ -sets

- Across this equivalence,

# $i(\text{Res} \otimes \text{Res}) = \begin{cases} \text{independently combinable pairs of} \\ \text{finite-width probability spaces on } [0,1]^{\omega} \end{cases}$

Theorem 4.24





## See the paper for...

- Precise definitions
- Separation logic details
- Constructing suitable  $s_{\infty}$ s
- Properties of  $EMS_{std}$  (monoidal, atomic, subcanonical)





the familiar product of probability spaces

Lilac's independent combination can be explained in terms of



- the familiar product of probability spaces
- Our nominal-flavored equivalences corroborate recent work relating probability to names

Lilac's independent combination can be explained in terms of



- the familiar product of probability spaces
- Our nominal-flavored equivalences corroborate recent work relating probability to names

### **Probabilistic Programming Semantics for Name Gener**

MARCIN SABOK, McGill University, Canada SAM STATON, University of Oxford, United Kingdom DARIO STEIN, University of Oxford, United Kingdom MICHAEL WOLMAN, McGill University, Canada

### **Probability Sheaves and the Giry Monad<sup>\*</sup>**

Alex Simpson

# Lilac's independent combination can be explained in terms of

| ration |                                                                   |
|--------|-------------------------------------------------------------------|
|        | Equivalence and Conditional Independence<br>in Atomic Sheaf Logic |
| *      | Alex Simpson*                                                     |
|        |                                                                   |





### Thanks!

### EMS

### independence via product spaces

 $\sim$ 

li.john@northeastern.edu



### Lilac's independent combination\*



## The folklore

Our results are probabilistic analogs of the following fact:



### The folklore

Our results are probabilistic analogs of the following fact:

### separation logic in Sch

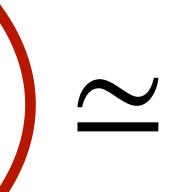
### separation logic in Nom $\sim$



### The folklore

Our results are probabilistic analogs of the following fact:

### separation logic in Sch



separation logic in Nom



• Sch = Sh<sub>atomic</sub>(FinInj<sup>op</sup>)



## The folklore: separation logic in Sch • $Sch = Sh_{atomic}(FinInj^{op})$ "heap shapes"



- $Sch = Sh_{atomic}(FinInj^{op})$
- (FinInj<sup>op</sup>, +,  $\emptyset$ ) is a monoidal category.

• Yields a monoidal structure  $(\otimes, I)$  on **Sch**, by Day convolution.



- There is a sheaf of heaps  $\mathbb{H}(I)$
- The convolution  $\mathbb{H} \otimes \mathbb{H}$  is a sheaf of separated heaps:

### $(\mathbb{H} \otimes \mathbb{H})(L) = \{(h, h') \mid \operatorname{dom}(h) \cap \operatorname{dom}(h') = \emptyset\}$

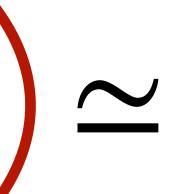
These form the basic ingredients of separation logic.

$$L) = L \rightharpoonup_{\text{fin}} \mathbb{Z}.$$



Our results are probabilistic analogs of the following fact:

### separation logic in Sch

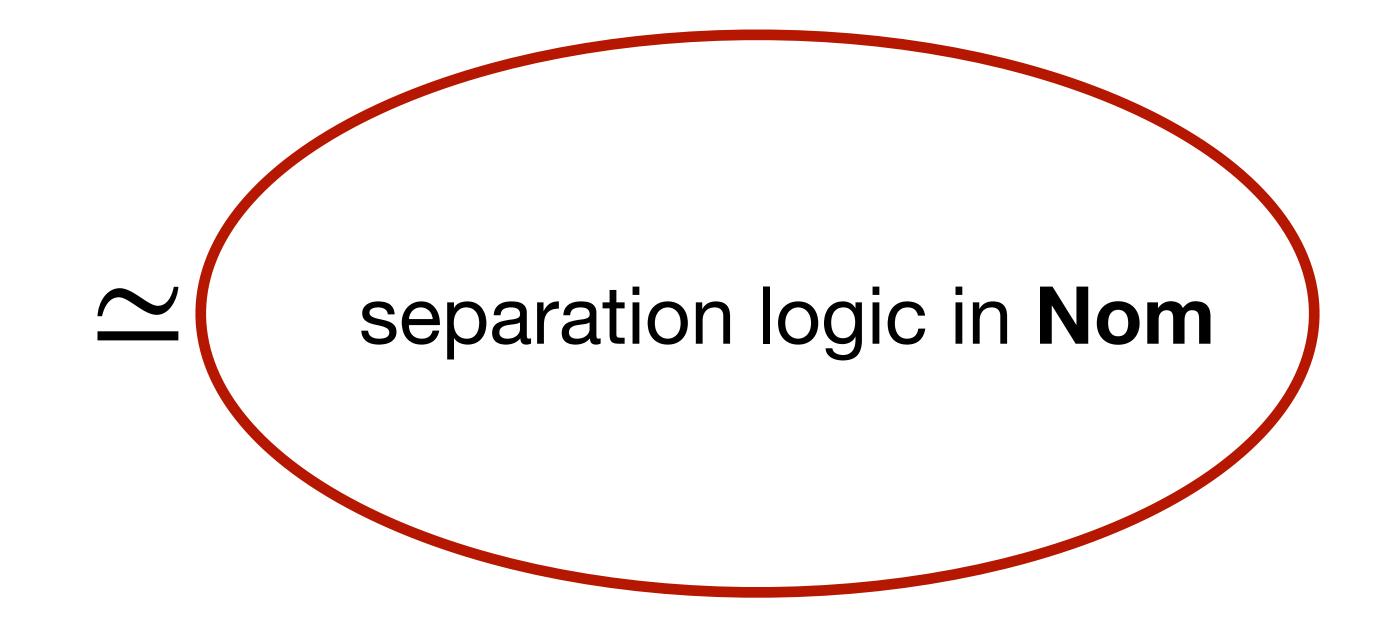


separation logic in Nom



Our results are probabilistic analogs of the following fact:

### separation logic in Sch





# The folklore: separation logic in Nom

• Nom = G Set, where  $G = Aut_{fin}(\mathbb{N}) + a$  particular topology.



# The folklore: separation logic in Nom

- Heaps:  $\overline{\mathbb{H}} = \mathbb{N} \rightarrow_{\text{fin}} \mathbb{Z}$
- Separated heaps:
- These again form the basic ingredients of separation logic.

#### • Nom = G Set, where $G = Aut_{fin}(\mathbb{N}) + a$ particular topology.

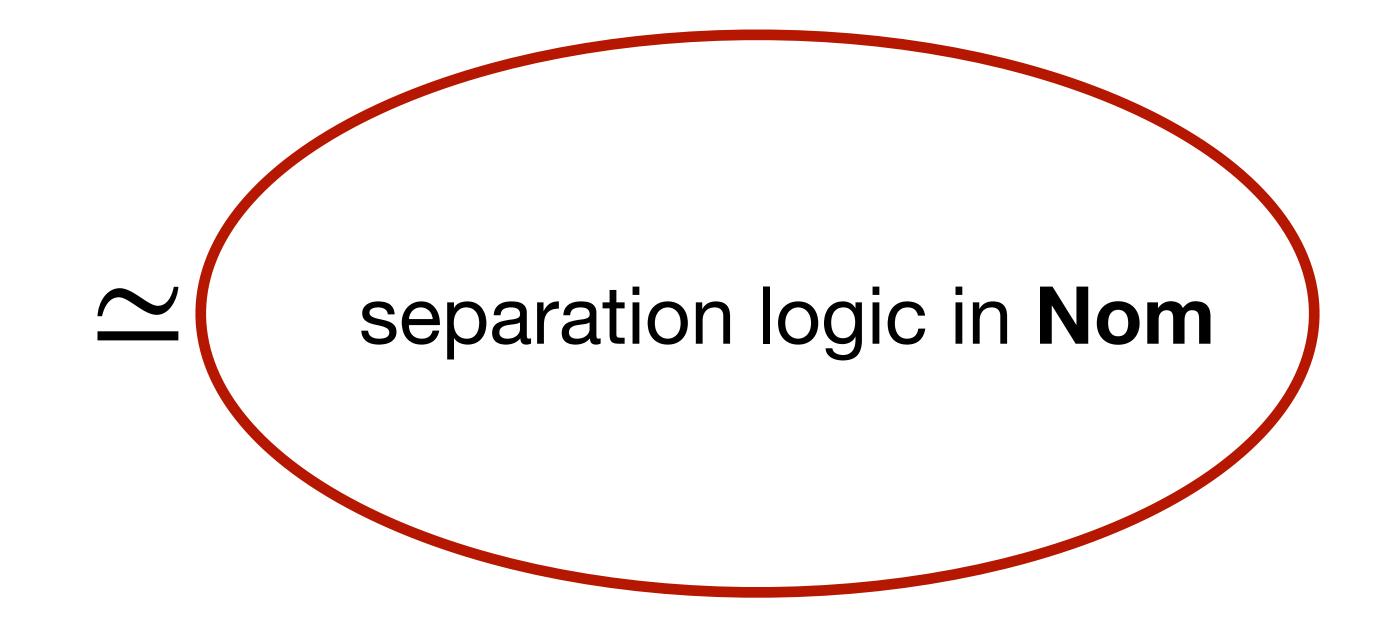
#### $\overline{\mathbb{H}}_{sep} = \{(h, h') \in \overline{\mathbb{H}} \times \overline{\mathbb{H}} \mid \operatorname{dom}(h) \cap \operatorname{dom}(h') = \emptyset\}$



# The folklore: separation logic in Nom

Our results are probabilistic analogs of the following fact:

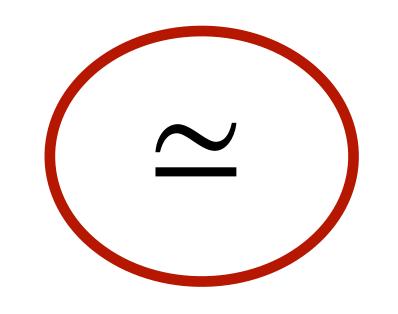
#### separation logic in Sch





• Our results are probabilistic analogs of the following fact:

# separation logic in Sch $\qquad \simeq \qquad$ separation logic in Nom





#### Saunders Mac Lane leke Moerdijk

Sheaves in Geometry and Logic

A First Introduction to **Topos Theory** 

#### , Theorem III.9.2: Sch $\simeq$ Nom.



Across this equivalence,

#### Sch

# $\mathbb{H} \qquad \text{corresponds to} \qquad \overline{\mathbb{H}} \\ \mathbb{H} \otimes \mathbb{H} \qquad \text{corresponds to} \qquad \overline{\mathbb{H}}_{sep} \\ \end{array}$

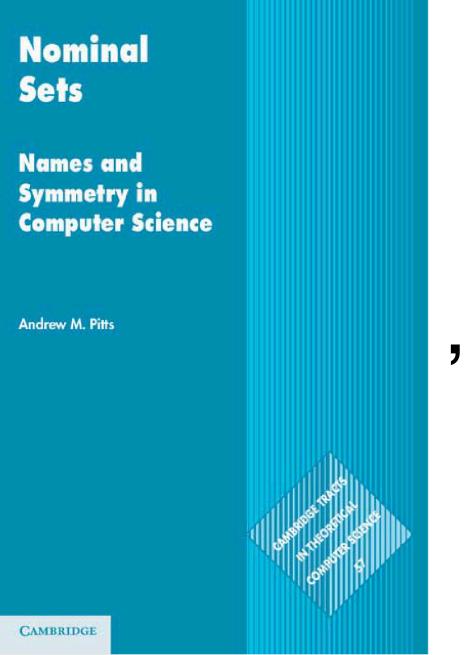
#### Nom



Key idea: every renaming can be implemented by a permutation

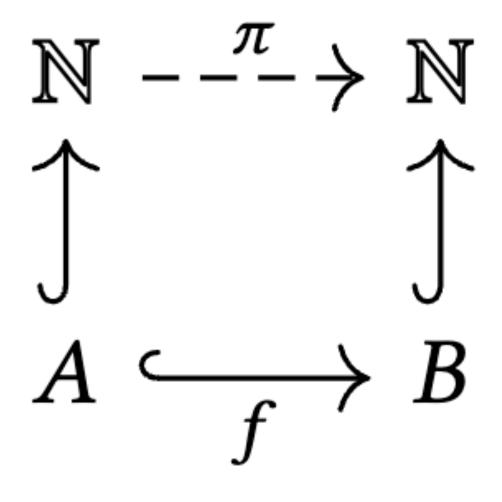






#### , Lemma 1.14 (Homogeneity):

#### Key idea: every renaming can be implemented by a permutation

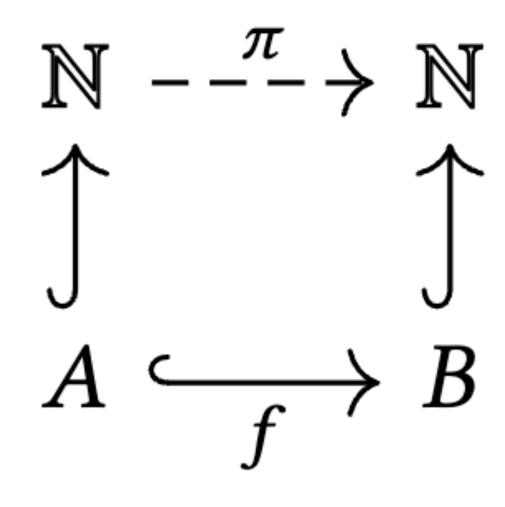


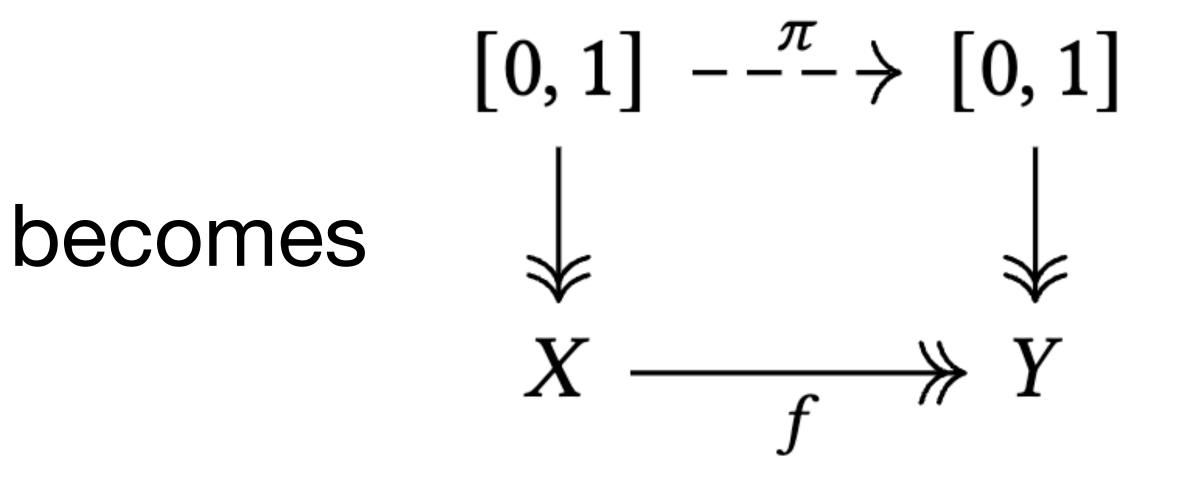




# Our probabilistic analog: the discrete case

• Key lemma:

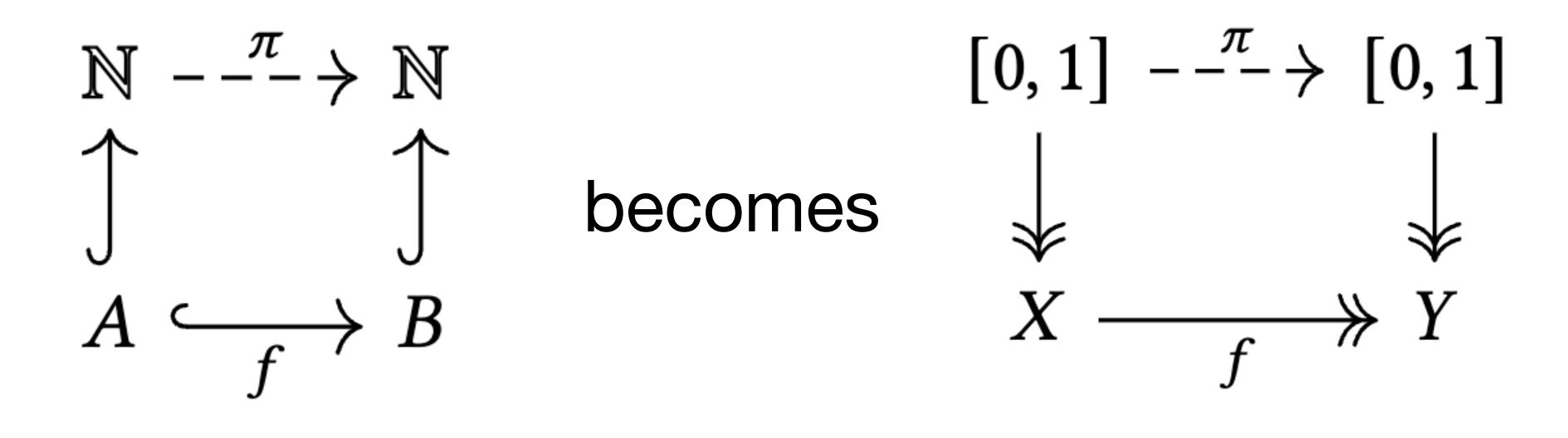






## Our probabilistic analog: the discrete case

• Key lemma:



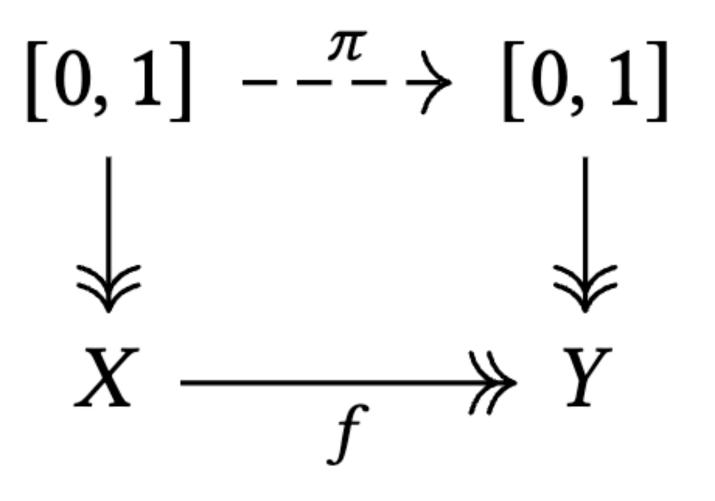
subsets of [0,1] are measurably isomorphic.

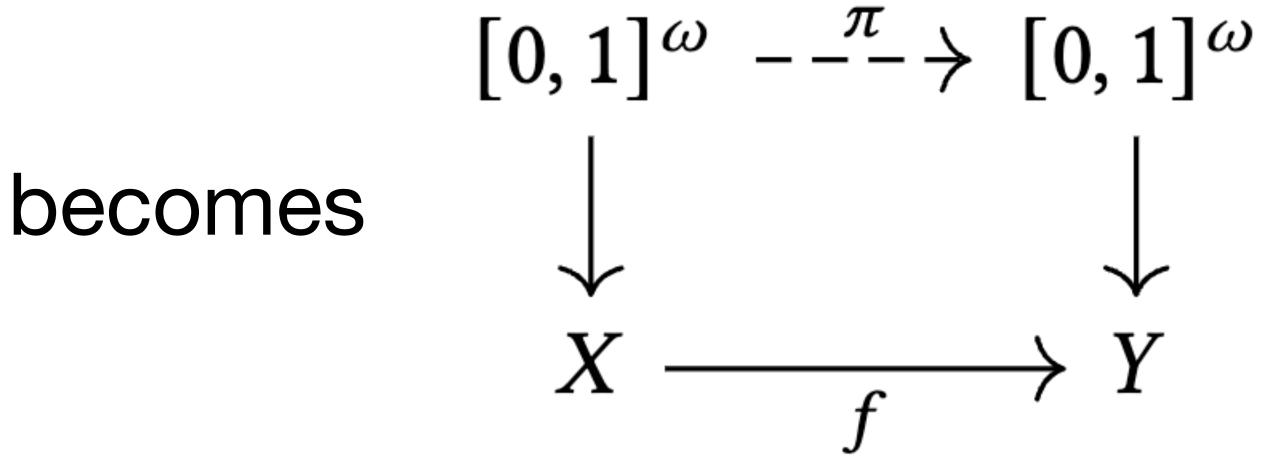
Proof roughly boils down to: any two nonnegligible measurable



## Our probabilistic analog: the continuous case

• Key lemma:

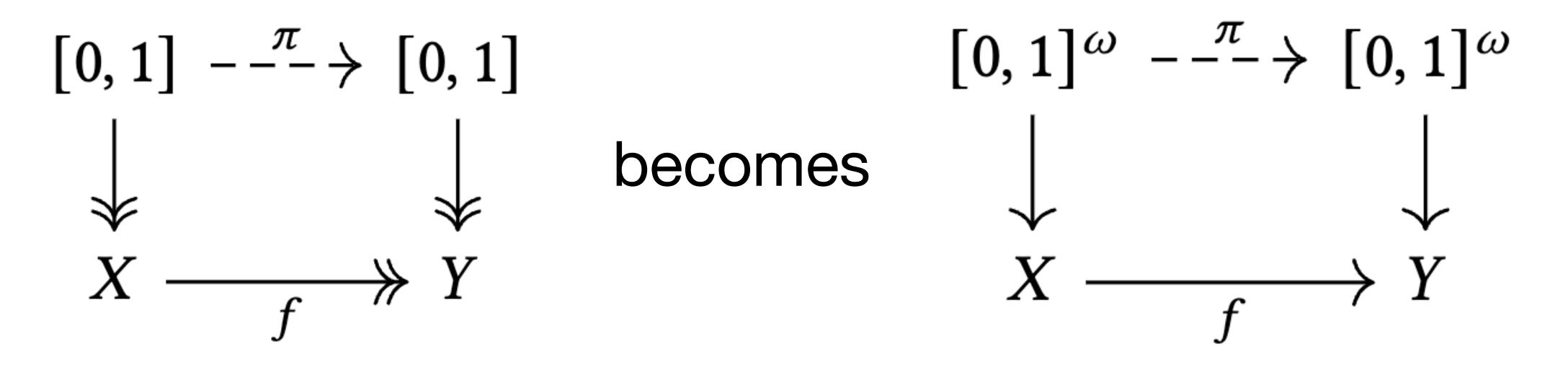






## Our probabilistic analog: the continuous case

• Key lemma:



Proof requires some heavy-duty measure theory.

